Common Geometry (LCGO)

Introduction talks

gear_overview.pdf

Workpackages

to get a list of work items that need to be addressed klick on the link above

Requirements

- Should be at least as functional as existing systems (org.lcsim, GEAR, Mokka, SLIC)
- Shoule enable smooth transition path from existing systems
- Should encourage interoperability between systems
- have no known principle short comings: "everything should be possible"

Implementation Ideas

- Three levels of API?
 - ° Low level (equivalent to Geant4 geometry objects)
 - Initially dumb objects, sufficient to create Geant4 geometry
 - Medium level (similar to GEAR::Vertex::API)
 - High level (allows finding which detectors exist)
- have collection of driver classes
 - one subdetector level
 - $^\circ~$ gcj comliant Java (to be called from C++/Marlin)
 - ° read in 'free format' from parameters from xml elements
 - should probably be similar to compact/gear
- low level implemetation:
 - create "queue" of geometry instructions
 - logical volumes
 - physical volumes
 - placements
 - material
 - etc
 - $^{\circ}\;$ have converters that go through queue of instructions and create
 - G4Detector
 - HepRep
 - GDML/LCDD
- medium and high level: GEAR interface(API)

points to cover

- GEAR++ interface deifinition (medium and high level)
 - tracking (and clustering PFA)
 - average material volumes
 - intersection with 'next' volume
 - dE/dx
 - field maps
 - o volumes ?
 - local to global position
 - extensions of detectors (a la gear)
 - e.g. #layers, thickness, width,...
- material database
- field maps
- properties (sampling fractions)
- readout properties
 - cellId <-> position
 - cellid range (noise simulation)
 - cell sizes
 - neighbors
- Vector and Matrix classes (also LCIO)
 - ThreeVector, Point3D
 - Planes, cylinders, ... ?
 - FourVector
 - SymMatrix (covariances)

