
Developing/Modifying SDKs
Note: all instructions on this page assume you are at a SLAC system with access to Lab 1.

Developing the SDK

Each SDK has a development branch, which is only modifiable when checking out from a development SDK. The user SDKs (q.v.) aren't modifiable by
users.

Fetch Development branch of SDK

To fetch the development branch of an SDK, the script is provided in . Here is the fetchDevSdk /afs/slac/g/cci/bin/sdktools/fetchDevSdk
usage statement when invoked without arguments:

Usage: fetchDevSdk <architecture> [<architecture> ...]
 fetchDevSdk all
Fetches one or more SDKs from the development tree.
Valid architectures: arm-linux-rceCA9 arm-rtems-rceCA9 i86-linux-32 i86-linux-64

Your SDKs will end up in your current directory with the architecture name. Once you wish to start developing, you should create a new branch and then
merge back to development. For branching and merging info see the .Git - Book

Modifying the SDK

Once you have a development SDK, you can start modifying files. If you're updating libraries and include files from the workspace, see the next section.

Create your own branch with . Change the scripts/examples/host tools as you wish. will tell you what you have modified, then git branch git status
use , , and finally and to propagate your changes back to the origin development repositories.git add git commit git merge git push

Updating the SDK from the workspace

If you are updating the SDKs with code compiled in a workspace (the core development environment, not the SDK environment), a python script in the
workspace provides hooks for copying the relevant files to the SDK:

$ workspace/make/tools/updateSDK.py --help
Usage: updateSDK.py [options]

Options:
 -h, --help show this help message and exit
 --sdk=SDK Location of SDK git directory
 --work=WORK Location of workspace (for RTEMS template code)
 --build=BUILD Location of build directory
 --arch=ARCH Target Architecture (e.g. arm-rtems-rceCA9-opt)
 --exclude=EXCLUDE File of items to exclude
 --rtemsInclude=RTEMSINCLUDE
 Location of RTEMS Include files
 --fpgaSrc=FPGASRC Location of FPGA bit files

Options, with a bit more explanation:

--sdk The location of the SDK to update REQUIRED
--arch The SDK architecture REQUIRED
--work The location of the workspace (default=./)
--build The location of the workspace build directory (default=work/build)
--exclude A file saying what to put into the SDK. (Defaults are in work/make/sdk/<arch>)not
--rtemsInclude Only used if RTEMS include files are being updated
--fpgaSrc Use when updating 'fpga.bit' files

Regression test the prospective tag

Test install onto an RCE from the development SDK using the instructions at .SDK Regression
Create an SDK card from the SDK (also following the instructions referenced above).

Releasing

Snapshot and Tag the core code

http://git-scm.com/book
https://confluence.slac.stanford.edu/display/CCI/SDK+Regression

1.
2.
3.
4.

Typically in SLAC DAT's development model, the core code is being tagged from the current trunk, not from a set of branches. A script is available in the
core system to do a snapshot of the core trunk, collecting the workspace and the other projects together into a single chunk that's easy to deal with:

$ workspace/make/tools/snapshot.sh "commit message"

After running, this script prints out the location of your new snapshot in the DAT SVN repository. The location is relative to $SVNROOT, and is of the
format "core_tags/snapshot/YYYYMMDD_HHmm". From here, you can do the "final" tag by copying the snapshot (using svn cp) to core_tags/prod/VX.Y.Z,
like in this example:

$ svn cp $SVNROOT/core_tags/snapshot/20140813_1225 $SVNROOT/core_tags/prod/V0.4.0 -m "Official tag for V0.4.0"

Build the tagged workspace in AFS

We build the workspace in AFS and do the final population of the SDKs from this source. A script is /afs/slac/g/cci/sdimages/workspaces
provided to build exactly what's needed, and no more.

cd to /afs/slac/g/cci/sdimages/workspaces
svn co -q $SVNROOT/core_tags/prod/VX.Y.Z
cd VX.Y.Z
../makerelease.sh

Prepare the DEV SDKs for release

One last time, run from the workspace onto each of the development SDKs. Review the changes using and .updateSDK.py git status git diff

Create the tag by updating the TAG file in the root of each SDK. After updating TAG, update the RELEASE_NOTES for each SDK to reflect the change
set. Once you're confident that you have everything, add and commit the new/changed files with and . Now, push the changes to git add git commit
the remote repository with (run from each git repository you've modified).git push

Tag the SDK

cd to the development master repositories in . For each SDK repository subdir (include, lib, tgt,...):/afs/slac/www/projects/CTK/SDK/dev/<arch>

/afs/slac/www/projects/CTK/SDK/dev/sdk_scripts/tag_repo.sh <os> <tag>

where is either linux or rtems, and is the VX.Y.Z tag you chose above.os tag

Propogate the tag to the SDKuser

The final step is to make these changes visible to the user outside SLAC.

cd /afs/slac/www/projects/CTK/SDK/
dev/sdk_scripts/pull-user-from-dev

Check out the user SDKs into AFS

A copy of the user SDK is kept on AFS in order to build SD cards.

cd /afs/slac/g/cci/sdimages/sdk
mkdir VX.Y.Z
cd VX.Y.Z
../fetchAllUser VX.Y.Z

Populate the SDK root structure

The directory contains the top level structures needed for creating the SD cards used by the DPM/DTMs. This area /afs/slac/g/cci/sdimages
contains several things, such as the linux kernel and the ramdisk image, which are only used while creating SD cards from scratch. Each of these
structures are versioned, since the contents of an SD card is highly release dependent.

A good rule of thumb is to copy the previous version (using to prevent link dereferencing) and update the SVN revision number in version.txt. /bin/cp -d
Retrieve the SVN revision with in the tagged workspace. After updating version.txt, update the workspace and sdk soft links.svn info

Finally, after this is all done, update the links in , and .current sdimages sdimages/workspaces sdimages/sdk

Announce the tag

Finally, the RELEASE_NOTES should be propogated to the page, and an announcement should be made to the current user list.SDK Releases

Appendix

SDK image root structure

This documents the directory structure in . TBD/afs/slac/g/cci/sdimages

https://confluence.slac.stanford.edu/display/CCI/SDK+Releases

	Developing/Modifying SDKs

