AIDA Styles

This is a collection of thoughts on AIDA Styles and on their use in the new plotter.

Style Store

This is an object that can save and retrieve styles from a store (xml file on disk, database table). The basic xml style definition is the AIDA one. Next to the
style itself we also identified the need to define Style Rules that should also be saved/retrieved to/from the store:

<styl eSt ore>

<styl es>

<styl e>

<rul es>

<rul e>

</rul e>

</ rul es>
</style>
</ styl es>
</ styl eStore>

Multiple stores might be loaded at once: System Store, Personal Store, Group Store, Experiment Store. Their information is grouped and managed by a Sty

le Registry

Style Rules

It should be possible to define rules on how to attach a style to a particular plot object. Multiple rules might be applied to a given style. It should be possible

to apply rules to:

object type: hep.aida.lHistogram1D, org.myproject.MyDatalD

object path: with path expressions like "MC/**"

plot order: a specific order position, 0, 7 or a cyclical recurrence (3) -> every third plot
action: like printing (plots for printing might require less details)

category: "experiment=GLAST, quality=preliminary"

Style Registry

A style registry combines the styles and rules from different style stores and provides the right set of styles (with the appropriate Style Order) for a given

plot object.

Style Order

We have to define the order in which the styles are applied to an object:

® passed style (when plotting)
® explicit in annotation (like labels)

* implicit:
[e]

[e]
[e]
[e]
[e]

action
category
plot order
path

type

Style Editor

GUI front end for viewing and editing individual styles or combinations of styles.
We already have a first version of the style editor. We need to add the possibility to view the information contained in a style registry, i.e. the chain of styles
contributing to a given object and the set of rules that have contributed to it.

Comments to AIDA Styles

® does isVisible() belong to IBaseStyle?
® can we plot an object by passing only an IDataStyle (rather than an IPlotterStyle)?

#
#
#
#

Ideas for Implementation

Let's leave Style Store out of this discussion just for the moment.
So Style Registry is created and is getting populated by (or just acts as a manager/facade for) the Style Stores, but it has access to Style/Rules information.

Just before object is plotted/printed and we know the object's path in a Tree, object's type, order of the object in particular IPlotterRegion, etc. All this
information is used to query the Style Registry and create a cumulative IPlotterStyle for the implicit parameters.

Information that we need:

Object type: from the object itself
Object path: from AIDA tree, from initial user plotting request, or from the object
Plot order: from the current IPlotterRegion - is it overlay or not, and if it is - how many objects are already plotted there
Attribute: arbitrary attributes in a form of "key=value" pair can be added
Action: program that is performing action should know what it is doing - plotting, printing, etc.
Category: this is an external parameter and has to come from a separate service. We must be able to keep track of multiple categories and their
current values, e.g. "experiment=BaBar" _and_ "quality=draft"
© Can be part of Style Registry functionality, or independent service
o Example: selected by user from the list of available Categories - PAW style plots, GLAST style plots
© Action looks a lot like Category: "printing" -> "printing=true”

If any styles are passed explicitly to the plotter, this implicit cumulative style will be set as parent (or merged in as a lower priority Style).

I've set three interfaces that might do the job (below), have a look.

IStyleRegistry interface:
IPlotterStore in StyleRegistry is identified by a name (storeName). Store names have to be unique.

Also StyleRegistry can manage the Categories: list of all available keys and set of current values.

package hep.aida.ref.plotter.style.registry;
inport hep.aida.lPlotterStyle;
public interface |IStyleRegistry {
/1 To work with Style Stores
String[] getAvail abl eStoreNanes();
| StyleStore getStore(String storeNane);
/1 To work with categories, this can be a separate service
/1 Available category keys are filled fromRules of all available Stores
String[] getAvail abl eCat egoryKeys();
String[] getAvail abl eCat egoryVal ues(String categoryKey);
String get CategoryCurrentVal ue(String categoryKey);
voi d set Cat egoryCurrentVal ue(String categoryKey, String categoryVal ue);

/1 Follow ng nethods are used to obtain cunmulative IPlotterStyle
/] for particular plotter, region, object, action, and (possibly) categories

IPlotterStyle getStyl eForState(lPlotterState state);

IStyleStore interface:

package hep.aida.ref.plotter.style.registry;

inmport hep.aida.lPlotterStyle;

/**

* This interface can be inplenented as "In-Menory" copy of persistent
* facility, or as keeping |ive connections and committing any change
* immediately.

*/

public interface I StyleStore {

/'l Key for AIDA type of object that the Style is going to be used with
public static String STYLE PREVIEWTYPE = "STYLE PREVI EW TYPE";

/1 Key for Style nane
public static String STYLE STORE_NAME = "STYLE_STORE_NAME";

String getStoreNane();
String getStoreType();

bool ean i sReadOnl y();

/1 Manage Styles

bool ean hasStyl e(String styl eNane);

void addStyle(String styleNane, IPlotterStyle style);

voi d addStyle(String styleName, |IPlotterStyle style, IStyleRule rule);

IPlotterStyle getStyle(String styl eNane);

/**

* Renpbve Style and Rule associated with it fromthe Store
*/

IPlotterStyle renoveStyl e(String styleNane);

String[] getAll Styl eNanes();

/] Create new Rule for this Store - Store acts as a Rule Factory

I Styl eRul e createRul e();

/1 Manage Rules - only one rule per style is allowed
I Styl eRul e get Rul eFor Style(String styl eNane);
voi d setRul eForStyle(String styleNane, |StyleRule rule);

voi d renoveRul eFor Styl e(String styl eNane);

/**

* Wite all information from Store to the undel ying persistent
* facility: XML file, database, etc.

*/

void conmt();

/**

* Close all connections and free all resources.

* Store is not usable after this nethod is executed.
*/

void close();

IStyleRule interface:

Style Rule contains expression that is evaluated at run-time

package hep.aida.ref.plotter.style.registry;

public interface IStyleRule {

public
public
public
public
public
public
public
public
public

String

/1 Evaluates the Rule

stati
stati
stati
stati
stati
stati
stati
stati
stati

O 00000000

Stri
Stri
Stri
Stri
Stri
Stri
Stri
Stri
Stri

ng
ng
ng
ng
ng
ng
ng
ng
ng

PATH = "Pat h";

OBJECT = "Chject"”;

OBJECTTYPE = " bj ect Type";
NULL = "Nul I ";

ATTRIBUTE = "attribute(\"\")";
OVERLAYI NDEX = "Overl ayl ndex";
OVERLAYTOTAL = "OverlayTotal ";
REG ONI NDEX = " Regi onl ndex";
REG ONTOTAL = "Regi onTotal ";

get Description();

bool ean rul eApplies(IPlotterState state);

How to Evaluate Style Rules

® CLASS
O Plotted object is exactly instance of specified class
© Plotted object is derived from specified class

* PATH

© Path contains specified sub-path
® Case sensitive

® NOT Case sensitive

© Regular expression

® ORDER
© Absolute number of overlaid plots, like 3-rd

© Position in the recurring sequence, like 4-th out of 7
® ATTRIBUTE: match "key=value" pair

© Case sensitive
© NOT Case sensitive
® ACTION: match action name
O Case sensitive
© NOT Case sensitive

® CATEGORY: match "key=value" pair
O Case sensitive
© NOT Case sensitive

IPlotterState interface:

package hep.aida.ref.plotter.style.registry;

/**
* This object encapsul ates informati on about rel evant
* | PlotterRegion, object, and actions.
* |t is used for obtaining inplicit IPlotterStyle
*/
import java.util.Mp;
public interface IPlotterState {

static String ATTRIBUTE_KEY_PREFI X = "I PlotterState";

oj ect get vj ect () ;
String get Cbj ectPath();

int getOverlaylndex();
int getOverlayTotal ();

int getRegi onl ndex();
int getRegionTotal ();

String getAttribute(String key);
Map getAttributes();

void clear();

	AIDA Styles

