
psana - User Manual

Introduction
Framework Architecture
Analysis Job Life Cycle
User Modules
Controlling Framework from User Module
Job and Module Configuration

Configuration File Format
Parameter Types
Psana Parameters
User Modules Parameters
Accessing Configuration Parameters

Messaging Service
Writing User Modules
Running Psana

Specifying input data
Psana Module Examples

Introduction
This document describes C++ analysis framework for LCLS and how users can make use of its features. Psana design borrows ideas from multitude of
other framworks such as pyana, myana, BaBar framework, etc. It's main principles are summarized here:

support processing of both XTC and HDF5 data format
user code should be independent of specific data format
should be easy to use and extend for end users
support re-use of the existing analysis code
common simple configuration of user analysis code

This manual is accompanied by the which describes interfaces of the classes available in Psana.psana - Reference Manual

Framework Architecture
The central part of the framework is a regular pre-built application (psana) which can dynamically load one or more user analysis modules which are
written in C++ or Python. The core application is responsible for the following tasks:

loading and initializing all user modules
loading one of the input modules to read data from XTC or HDF5
calling appropriate methods of user modules based on the data being processed
providing access to data as set of C++ classes and a set of Python classes
providing other services such as histogramming to user modules

Other important components of the Psana architecture:

user module – instance of the C++ or Python class which inherits pre-defined Module class and defines special methods which are called by the
framework
event – special object which transparently stores all event data
environment – special object which stores non-event data such as configuration objects or EPICS data

Analysis Job Life Cycle
Psana analysis job goes through cycles of state changes such as initialization, configuration, event processing, etc. calling methods of the user modules at
every such change. This model follows closely the production activities in LCLS on-line system. DAQ system defines many types of transitions in its data-
taking activity, most interesting are here:

Configure - provides configuration data for complete setup
BeginRun - start of data taking for one run
BeginCalibCycle - start of the new scan, some configuration data may change at his point
L1Accept - this is regular event containing event data from all detectors
EndCalibCycle - end of single scan
EndRun - end of data taking for one run
Unconfigure - stop of all activity

https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Reference+Manual

Typically there will be more than one run taken with the same configuration, so there may be more than one transition for one BeginRun/EndRun Config
, but a data file from single run should contain only one . Depending on a setup there could be one or more ure/Unconfigure BeginRun/EndRun Begin

 transitions in single run.CalibCycle/EndCalibCycle

For each of the above transitions psana will call corresponding method in user modules notifying them of the possible change in the configuration or just
providing event data. Following method names are defined in the user modules:

beginJob() – this method is called per analysis job when first transition happens. If there is more than one in once Configure Configure
single job (when processing multiple runs) this method is not called, use beginRun() to observe configuration changes in this case. This method
can access all configuration data through environment object.
beginRun() – this method is called for every new , so it will be called multiple times when processing multiple runs in the same job. BeginRun
This method can access all configuration data through environment object.
beginCalibCycle() – this method is called for every new , so it will be called multiple times when processing multiple runs in BeginCalibCycle
the same job or when single run contains multiple scans. This method can access all configuration data through environment object.
event() – this method is called for every new , it has access to event data through event object as well as configuration data through L1Accept
environment object.
endCalibCycle() – this method is called for every new , it has access to configuration data through environment object.EndCalibCycle
endRun() – this method is called for every new , it has access to configuration data through environment object.EndRun
endJob() – this method is called at the end of analysis job, it has access to configuration data through environment object.once

Typically psana will iterate through all transitions/events from the input files. User modules have a limited control over this event loop, module can request
to skip particular event, stop iteration early or abort job using one of the methods described below.

User Modules
A user module provides an instance of a class that inherits from the Psana class. Below we discuss this for C++. The Psana class is Module Module
defined in the file and implements several methods. These methods are already mentioned above, here is more formal description of psana/Module.h
each method:

void beginJob (Event& evt, Env& env)
Method called once at the beginning of the job. Environment object contains configuration data from the first transition. Default Configure
implementation of this method does not do anything.
void beginRun (Event& evt, Env& env)
Method called at the beginning of every new run. Default implementation of this method does not do anything.
void beginCalibCycle (Event& evt, Env& env)
Method called at the beginning of every new scan. Default implementation of this method does not do anything.
void event (Event& evt, Env& env)
Method called for every regular event. Even data is accessible through =evt= argument. There is no default implementation for this method and
user module must provide at least this method.
void endCalibCycle (Event& evt, Env& env)
Method called at the end of every new scan, can be used to process scan-level statistics collected in . Default implementation of this event()
method does not do anything.
void endRun (Event& evt, Env& env)
Method called at the end of every run, can be used to process run-level statistics collected in . Default implementation of this method event()
does not do anything.
void endJob (Event& evt, Env& env)
Method called once at the end of analysis job, can be used to process job-level statistics collected in . Default implementation of this event()
method does not do anything.

In addition to method every module class must provide a constructor which takes a string argument giving the name of the module. Additionally it event()
has to provide a special factory function used to instantiate the modules from the shared libraries, there is special macro defined for definition of this
factory function.

Here is the minimal example of the module class declaration with only the method implemented and many non-essential details are skipped:event()

Package/ExampleModule.h

#include "psana/Module.h"

namespace Package {
class ExampleModule: public Module {
public:

 // Constructor takes module name as a parameter
 ExampleModule(const std::string& name);

 // Implementation of event() from base class
 virtual void event(Event& evt, Env& env);

};
} // namespace Package

Definition of the factory function and methods:

Package/ExampleModule.cpp

#include "Package/ExampleModule.h"
#include "MsgLogger/MsgLogger.h"
#include "PSEvt/EventId.h"

// define factory function
using namespace Package;
PSANA_MODULE_FACTORY(ExampleModule)

// Constructor
ExampleModule::ExampleModule(const std::string& name)
 : Module(name)
{
}

void
ExampleModule::event(Event& evt, Env& env)
{
 // get event ID
 shared_ptr<EventId> eventId = evt.get();
 if (not eventId.get()) {
 MsgLog(name(), info, "event ID not found");
 } else {
 MsgLog(name(), info, "event ID: " << *eventId);
 }
}

This simple example already does something useful, it retrieves and prints event ID (copied from standard PrintEventId module). Actual modules will do
more complex things but this is a simple example of obtaining something from event data.

The easiest way to write new user modules is to use script to generate class from predefined template. This command will create new module codegen Ex
 in package and will copy generated files to the directories in TestPackage:ampleModule TestPackage

codegen -l psana-module TestPackage ExampleModule

Controlling Framework from User Module
Code in user modules can control framework event loop by calling one of the three methods:

void skip()
Signal framework to skip current event and do not call other downstream modules. Note that this method does not skip code in the current
module, control is returned back to the module. If you want to stop processing after this call then add a return statement.
void stop()
Signal framework to stop event loop and finish job gracefully (with calling endRun/endJob/etc.). Note that this method does not terminate
processing in the current module. If you want to stop processing after this call then add a return statement.
void terminate()
Signal framework to terminate immediately. Note that this method does not terminate processing in the current module. If you want to stop
processing after this call then add a return statement.

Here is an example of the code using above functions:

void ExampleModule::event(Event& evt, Env& env) {

 ...

 if (pixelsAboveThreshold < 1000) {
 // This event is not worth looking at, skip it
 skip();
 // I do not want to continue with this algorithm either
 return;
 }

 if (nGoodEvents > 1000) {
 // we collected enough data, can stop now and go to endJob()
 stop();
 // I do not want to continue with this algorithm either
 return;
 }

 if (temperatureKelvin < 0) {
 // data is junk, stop right here and don't call endJob()
 terminate();
 // I do not want to continue with this algorithm either
 return;
 }

}

Skipped events can be used in further analysis or saved in the "filtered" Xtc file, as explained in .Package PSXtcOutput

Job and Module Configuration
Psana framework has multiple configuration parameters that can be changed via command line or special configuration file. Configuration file can also
specify parameters for user modules so that modules' behavior can be changed at run time without the need to recompile the code.

If no options are specified on the command line then psana tries to read configuration file named from the current directory if that file exists. psana.cfg
The location of the configuration file can be changed with the option which should provide path of the configuration file.-c <path>

Configuration File Format

Configuration file has a simple format which is similar to well-known . The file consists of the sections, each section begins with the INI file format
section header in the form:

[<section-name>]

Section names can be arbitrary strings, but in psana case section names are the names of the modules which cannot be arbitrary and should not contain
spaces.

Following the section header there may be zero or more parameter lines in the form

<param-name> = <param-value>

Parameter name is anything between beginning of line and '=' character with leading and trailing spaces and tabs stripped. Parameter value is anything
after '=' character with leading and trailing spaces and tabs stripped, parameter value can be empty. Long parameter value can be split over multiple lines
if the line ends with the backslash character, e.g.:

files = /reg/d/psdm/AMO/amo00000/xtc/e00-r0000-s00-c00.xtc \
 /reg/d/psdm/AMO/amo00000/xtc/e00-r0000-s01-c00.xtc \
 /reg/d/psdm/AMO/amo00000/xtc/e00-r0000-s02-c00.xtc

Lines starting with '#' character are considered comments and ignored.

Parameter Types

https://confluence.slac.stanford.edu/display/PSDMInternal/Psana+Reference+Manual+-+Old#PsanaReferenceManualOld-PackagePSXtcOutput

Configuration file does not specify parameter types, all values in the file are strings. Psana framework provides conversion of these strings to several basic
C++ types or sequences. Following types and conversion rules are supported by framework:

bool
value strings "yes", "true", "on" become , "no", "false", "off" become . Strings which represent non-zero numbers become , string true false true
"0" becomes .false
char
value string must be single-character string and it will be assigned to a result.
C++ numeric types
option value must represent valid number.
std::string
option value will be assigned to result string without change.
C++ sequence types (e.g.) std::list<T>
option value will be split into single words at space/tab characters, individual words will be converted to resulting type .T

When the conversion fails because of the incorrectly formatted input framework will throw an exception with the type .ExceptionCvtFail

Psana Parameters

The parameters that are needed for the framework are defined in section. Here is the list of parameters which can appear in that section: psana modules

modules
list of module names to include in the analysis job. Each module name is built of a package name and class name separated by dot (e.g. TestPac

) optionally followed by colon and modifier. Modifier is not needed if there is only one instance of the module in the job. If kage.ExampleModule
there is more than on instance then modules need to include unique modifier to distinguish instances. If the module comes from psana package
then package name can be omitted. Module names can also be specified on the command line with option, for multiple modules use multiple -m -

 options or comma-separated names in single -m option.m
input or files
specifies input data, list of datasets or file names to process. Input data can also be specified on the command line which will override anything
specified in configuration file. See section for more details on dataset syntax.Specifying input data
events
maximum number of events to process in a job, can also be given on the command line with or option.-n --num-events
skip-events
number of events to skip before starting even processing, can also be given on the commnad line with or option.-s --skip-events
instrument
Instrument name.
experiment
Experiment name. Instrument and expriment names can be specified on the commnad line with or option, option value has -e --experiment
format or . By default instrument and experiment names are determined from input file names, you can use these XPP:xpp12311 xpp12311
options to override defaults (or when your file has non-standard naming).
calib-dir
Path to the calibration directory, can also be given on the commnad line with or option. Path can include { } and { } -b --calib-dir instr exp
strings which will be replaced with instrument and experiment names respectively. Default value for path is /reg/d/psdm/{instr}/{exp}

./calib

Here is an example of the framework configuration section:

[psana]
list of file names
files = /reg/d/psdm/AMO/amo00000/xtc/e00-r0000-s00-c00.xtc \
 /reg/d/psdm/AMO/amo00000/xtc/e00-r0000-s01-c00.xtc \
 /reg/d/psdm/AMO/amo00000/xtc/e00-r0000-s02-c00.xtc
list of modules, PrintSeparator and PrintEventId are from psana package
and do not need package name
modules = PrintSeparator PrintEventId psana_examples.DumpAcqiris

User Modules Parameters

Parameters for user modules appear in the separate sections named after the modules. For example the module with name "TestPackage.
ExampleModule" will read its parameters from the section .[TestPackage.ExampleModule]

To help manage configuration options, Psana provides a way select between several sets of parameters in a config file, as well as to override a default set
with a few specific values. When specifying a module to load, it can be tagged as follows:

modules = TestPackage.Analysis:mode1

The modifier after the colon tells Psana to first look for configuration parameters in the section and then in the [TestPackage.Analysis:model]
section . It is also possible to load the same module several times, specifying different configuration options for each [TestPackage.ExampleModule]
instance. Psana will construct each instance with a different name - based on the tag provided.

Here is an example of configuration for some fictional analysis job:

https://confluence.slac.stanford.edu/display/PSDMInternal/psana+modules

[psana]
modules = TestPackage.Analysis:mode1 TestPackage.Analysis:mode2

[TestPackage.Analysis]
these are common parameters for all TestPackage.Analysis modules,
but instances can override then in their own sections
calib-mode = fancy
subpixel = off
threshold = 0.001

[TestPackage.Analysis:mode1]
parameters specific to :mode1 module
range-min = 0
range-max = 1000000

[TestPackage.Analysis:mode2]
parameters specific to :mode2 module
range-min = 1000
range-min = 10000
subpixel = on

Accessing Configuration Parameters

User module base class defines few convenience methods which simplify access to configuration parameters. Here is the list of the methods:

std::string configStr (const std::string& param)
this method takes the name of the parameter and returns full parameter value as a string. If parameter cannot be found the exception will be
thrown.
T config (const std::string& param)
this method takes the name of the parameter and returns parameter value converted to type . If parameter cannot be found the exception will be T
thrown.
std::string configStr (const std::string& param, const std::string& def)
this method takes the name of the parameter and returns full parameter value as a string. If parameter cannot be found then the value of second
argument will be returned.
T config (const std::string& param, T def)
this method takes the name of the parameter and returns parameter value converted to type . If parameter cannot be found then the value of T
second argument will be returned.
Seq configList(const std::string& param)
this method takes the name of the parameter and returns parameter value converted to sequence. Sequence can be any of standard container
types such as or . If parameter cannot be found the exception will be thrown.std::list<std::string> std::vector<double>
std::list<T> configList(const std::string& param, const std::list<T>& def)
this method takes the name of the parameter and returns parameter value converted to . If parameter cannot be found then the std::list<T>
value of second argument will be returned.

Here is an example of the code in user module which uses these methods:

 Source src = configStr("source", "DetInfo(:Evr)");
 int repeat = config("repeat");
 std::list<std::string> options = configList("options");

Messaging Service
In many cases the user modules want to produce/print messages such as errors, warnings, or debugging information. In most cases C++ code uses
standard C++ facilities such as , , or even to format/print something to the terminal or log file. Psana framework provides std::cout std::cerr printf
different approach for messaging which provides better control for the output level (e.g. turning on/off debugging) and better flexibility.

Each message produced by messaging service carries corresponding level. There are several levels of messages defined by the service:

debug – lowest message level reserved for debugging messages, normally turned off during normal running
trace – one level higher than , normally turned off during normal runningdebug
info – level for regular informational messages, normally printed but can be turned off
warning – level for warnings which are not errors
error – level for error messages
fatal – level for fatal errors, after the message is published the program will terminate
The levels are ordered, enabling messages of one level also enables messages of all higher levels.

Each logging message is associated with one . Loggers have names which form hierarchical structure such as "GrandParent.Parent.Child". Top-logger
level logger has no name and is called . Loggers were introduced for flexibility, it is possible to configure individual loggers, for example to root logger
enable debug logging from one particular logger. Good practice is to use logger name which is the same as user module name for identification purposes.

To use messaging service one has to include header file which defines a set of macros for message logging and all related "MsgLogger/MsgLogger.h"
classes. User code interacts with the messaging service through this set of macros:

MsgLog(logger, level, message) // send a message to specific logger, takes logger name, logging level, and message. Message is a
construct which can appear after stream insertion operator (e.g.).cout << message
MsgLogRoot(level, message) // same as above but message is sent to root logger.

Here are few examples of using these macros:

 MsgLog("MyModule", info, "reading pedestals from file " << fileName);
 MsgLog("MyModule", debug, "intermediate result: count=" << count << " sum=" << sum);
 MsgLogRoot(warning, "warp engine overheating");

Note: in user module replace "MyModule" string with the name() call which returns the name of the user module.

Above macros are simple to use in most cases as they hide all details from user. In more complex situations (printing array elements) there are two
macros which provide access to underlying stream object which can be used in more interesting ways:

this macro declares stream object which can be used by the code in compound statement which follows the macro. The lifetime of the stream is
the code block, after the code block is executed the message is published and stream disappears.

variation of the above macro which publishes message to root logger.

Here is an example of their use:

 WithMsgLog("MyModule", debug, str) {
 str << "array elements:";
 for (int i = 0; i < size; ++ i) {
 str << " " << array[i];
 }
 }

When messaging service delivers (prints) the message in addition to message itself it provides additional information about message. In psana it will print
level name and logger name; for trace messages it will also print timestamp; for debug and error messages it will print timestamp and location (file name
and line number) where message originated.

By default psana enables messages of the level (and higher). To enable lower level messages one can provide -v option to psana: one -v will enable info
 messages, two -v options will enable messages. To disable and messages one can provide one or two -q options. Error and trace debug info warning

fatal messages cannot be disabled.

Note: when the message level is disabled the code in the corresponding macros is not executed at all. Do not put any expressions with side effects into
message or code blocks, these are strictly for messaging, not part of your algorithm.

Writing User Modules
Here are few simple steps and guidelines which should help users to write their analysis modules.

Everything is done in the context of the off-line analysis releases, your environment should be prepared and you should have test release setup
based on one of the recent analysis releases. Consult Workbook which should help you going.
You need your own package which may host several analysis modules. Package name must be unique. If the package has not be created yet run
this command:

newpkg MyPackage
mkdir MyPackage/include MyPackage/src

Generate skeleton module class from template:

codegen -l psana-module MyPackage MyModule

this will create two files: and MyPackage/include/MyModule.h MyPackage/src/MyModule.cpp
Edit these two files, add necessary data members and implementation of the methods.
For examples of accessing different data types see collection of modules in package. Reference for all event and psana_examples
configuration data types is located at https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psddl_psana/
Reference for other classes in psana framework: Psana Reference Manual
Run to build the module library.scons
Create psana config file if necessary.
Run providing input data, configuration file, etc.psana
It is also possible that somebody wrote a module which you can reuse for your analysis, check the module catalog: psana - Module Catalog

To add your own compiler or linker options to the build (such as to link to a third party library), see this .section on customizing the scons build

Running Psana
After writing and compiling the modules (or choosing standard modules) one can run psana application with these modules. Psana application is pre-built
and does not need to be recompiled. To start application one needs to either provide a configuration file or corresponding command-line options. Some
information (e.g. user module options) cannot be specified on the command line and always require configuration file. Here is the list of command-line
options recognized by psana:

Usage: psana [options] [dataset ...]

 Available options:
 {-h|-?|--help } print help message
 {-v|--verbose } (incr) verbose output, multiple allowed (initial: 0)
 {-q|--quiet } (incr) quieter output, multiple allowed (initial: 2)
 {-b|--calib-dir } path calibration directory name, may include {exp} and {instr}, if left empty then do
not do calibrations (default: "")
 {-c|--config } path configuration file, by default use psana.cfg if it exists (default: "")
 {-e|--experiment } string experiment name, format: XPP:xpp12311 or xpp12311, by default guess it from data
(default: "")
 {-j|--job-name } string job name, default is to generate from input file names (default: "")
 {-m|--module } name module name, more than one possible
 {-n|--num-events } number maximum number of events to process, 0 means all (default: 0)
 {-s|--skip-events} number number of events to skip (default: 0)
 {-o|--option } string configuration options, format: module.option[=value]

 Positional parameters:
 dataset - input dataset specification (list of file names or exp=cxi12345:run=123:...)

If both options and are missing from the command line then psana reads configuration file from current directory. Otherwise if option -c -m psana.cfg -c
is provided with the file name psana reads corresponding configuration file.

Modules loaded by psana can be specified in configuration and on command line with option. If option is provided then its value overrides module -m -m
list specified in the configuration file. One can provide comma-separated list of module names or multiple options on the command line, following -m
command lines are all equivalent:

% psana -m ModuleA,ModuleB,ModuleC ...
% psana -m ModuleA -m ModuleB -m ModuleC ...
% psana -m ModuleA,ModuleB -m ModuleC ...

Option can change job name which defines then names of the output histogram file. By default job name is constructed from the name of the first input -j
file.

Input data can also be specified in the configuration file or on command line, command-line arguments override configuration file values. Check section
below for complete description of dataset format.

Command-line options and can increase or decrease verbosity of the output generated by messaging service. By default psana outputs messages -v -q
at and higher levels. With one option messages will be printed also, and with two or more options messages will be printed too. info -v trace -v debug
With option messages will not be printed, only , , and .-q info warning error fatal

Here are few examples of running psana applications:

https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psddl_psana/
https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Reference+Manual
https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Module+Catalog
https://confluence.slac.stanford.edu/display/PSDMInternal/SConsTools

% psana -m EventKeys /reg/d/psdm/...
% psana -m psana_examples.EBeamHist -j ebeam-hist-r1000 /reg/d/psdm/...
% psana -c psana_examples/data/DumpAll.cfg exp=cxi12345:run=123
% psana # everything will be specified in psana.cfg file

Specifying input data

Input data for psana are specified on command line or in configuration file using special dataset syntax. More than one dataset can be specified in arbitrary
order, psana will will order datasets accordingly, so that events from all datasets are time-ordered.

In simplest case dataset is just a file name containing input data in either XTC of HDF5 format. File name should be given as a full path name, if there are
more than one stream or chunk in XTC data, all of them must be specified.

More advanced and recommended way is to provide input data as a special dataset string. The dataset string encodes various parameters, some of which
are needed to locate data files, while others specify optional behavior such as filtering or live data reading. The general syntax of the dataset string is a list
colon-separated parameters, parameters have optional values separated from parameter name by equal sign:

param[=value][:param[=value][...]

These are some of the parameters which are supported in psana:

experiment name (which may optionally contain the name of an instrument)

exp=CXI/cxi12313
exp=cxi12313

run number specification (can be a single run, a range of runs, a series of runs, or a combination of all above)

run=1
run=10-20
run=1,2,3,4
run=1,20-20,31,41

file type, if not specified then 'xtc' is the default

xtc
h5

Location of the files, if not specified then files will be searched in a standard location (/reg/d/psdm/...). If this parameter is specified it needs to be
full path name of the directory where files are located

dir=/reg/d/ffb/cxi/cxi12345/xtc

Input number stream number for XTC files, if value is omitted then one pseudo-random stream is selected (this is useful to balance the load on
FFB storage system for example):

one-stream=1
one-stream

allow reading from live XTC files while they're still being recorded (by the DAQ or by the Data Migration service). Note that this feature is only
available when running at PCDS, in all other cases the option will be ignored:psana

live

Few examples of dataset specification:

To read XTC data from specific run number:

exp=xpp12345:run=123

To read HDF5 from several runs:

exp=xpp12345:run=1,5,7-10:h5

To read live XTC data from a random stream from FFB directory

exp=xpp12345:run=1123:live:one-stream:dir=/reg/d/ffb/xpp/xpp12345/xtc

The complete description of the data set string syntax and allowed parameters can be found in the .specification document

Psana Module Examples
A set of psana modules is available in current release as explained in . Part of them demonstrates how data can be accessed from Psana Module Catalog
user module code . Other modules can be used in data analysis or event filtering. Example of application for these modules are available in separate
document:

Psana Module Examples - for advanced modules for analysis and event filtering

We continually develop algorithms for the standard set of psana modules. If the algorithm you need is missing in our collection we would be interested in
hearing about it (email pcds-help@slac.stanford.edu). We are interested in implementing algorithms that are useful to our users. Of course, following this
document, you can develop a Psana modules that implements the algorithm. A resource for sharing the module is the .Users' Software Repository

https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-doxy/html/classIData_1_1Dataset.html#_details
https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Module+Catalog
https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Module+Examples
https://confluence.slac.stanford.edu/display/PSDMInternal/Users%27+Software+Repository

	psana - User Manual

