Working with an Event Filter

Executing Drivers conditionally

org.lcsim allows you to add (Sub-)Drivers to your (Parent-)Driver.
add(new SubDriverd ass());

You can put this anywhere in your code!

The Event loop process needs to be told to execute the child Drivers specifically. This is done with

super . process()

Again, this statement can appear anywhere in your code, even in conditional statements.

You can combie these statements to specifically run your Drivers only on certain events. Like so:

import java.util.List;

import org.lcsimevent. Event Header;
import org.lcsimevent. MCParticle;
import org.lcsimutil.Driver;

class PrintDriverl extends Driver {
public void process(Event Header e) {
Systemout.printIn("PrintDriverl has been called");

}
}

class PrintDriver2 extends Driver {
public void process(Event Header e) {
Systemout.println("PrintDriver2 has been called");

}
}

public class FilterExanple extends Driver {
/1 Permanently add a Sub-Driver to this one
public FilterExanmple() {
add(new PrintDriver1());
}

public void process(Event Header e) {
Li st<MCParticle> parts = e.get MCParticles();
Systemout.println("Size: " + parts.size());
if (parts.size() < 100) {
/| Execute all added Sub-Drivers
super. process(e);
} else if (parts.size() < 150) {
/1 Add a Driver just for now
PrintDriver2 p2 = new PrintDriver2();
add(p2);
/'l again, execute ALL Sub-Drivers
super . process(e);
/1 you can even renove a Driver.
renove(p2);
} else {
Systemout.printIn("None is called");

}



	Working with an Event Filter

