
Beam Test Pipeline

Beam Test Pipeline Overview

Currently being updated
The pipeline automatically retrieves all online data produced by LATTE which are currently stored in directories associated with runs numbers and brings
them to the SLAC farm. After that, it populates an ORACLE database which provide queries to the data. The pipeline also creates reports, and launches
data processing/reconstruction code to produce data files and high level analysis ntuples.
A pipeline diagram can be seen below

Note that this diagram is not current, the recon task is more complex now. Rectangles represent TPs, the first one in a task is shaded. Ellipses represent
files, while hexagons represent symbolic links.

The xml files used for upload are located in /afs/slac/g/glast/ground/PipelineConfig/BeamTest-tasks/beamtestPipeline/current
They are generated by running scripts when installing the code.

Need an explanation of how the tasks get launched by FastCopy

Some existing documentation can be found in /afs/slac/g/glast/ground/PipelineConfig/BeamTest-tasks/beamtestPipeline/current/doc.
install.txt and operation.txt may both be read directly, but need to be updated. Running make in the doc directory will use IAndTPipeline.tex and several .
dot files to make a .pdf.

Policy for updating tasks

Describes policy and steps for updating

Environmental Variables

Setting up the environment so that one can acess the ORACLE database

Source /u/gl/glast/pdb_config/dpf_config_prod.csh (or .sh if you use BASH) to run the pipeline text-mode management tools, which are installed in
$PDB_HOME (which is set by the config script).

The environment variable beamtestPlRoot must be set to point to the location where the scripts are installed.

There is a master configuration file (setup/svacPlSetup.cshrc) that sets disk locations, code versions, and all kinds of fun stuff. It sets over 100
environment variables that are needed at task install or run time.

----BeamTestRelease is run from an AFS volume. When a new release is used, it must be either built on the AFS volume or copied there from the regular
build area in NFS. Then the cmt directories have to be configured to point to the new location. There are 10 AFS volumes that are shared by MC, SVAC
and beamtest pipelines. They are all mounted under /afs/slac.stanford.edu/g/glast/ground/releases as volume01-volume10. There's also a file in that
directory, VOLUME.USAGE, where you can claim your space.

BeamTestReport should be relinked against the new version of BeamTestRelease.

Neither BeamTestELog nor ConfigTables need to be relinked, as they are implemented in Python.

 Pipeline Tasks and Associated Scripts

Each pipeline task consists of several c-shell, python and perl scripts.

Pipeline tasks are structured as a linear chain of steps. Each step must succeed before going on to the next one. Each step must be attempted, until one
fails or the last one succeeds. That is to say, there is no flow control, and no parallelism. In order to deal with this, and to reduce the chance that a step
would not be reached due to the failure of a previous step on which it did not logically depend, the work we do in the pipeline is split into 7 tasks, all but
one of which (updateELogDB) are launched by other tasks. This launching is done without GINO's (the pipeline infrastructure) knowledge.

The sequence of steps within a task is set by an XML file that is uploaded via the GINO front end to create the task. This file also sets up input & output
files, what code to run, which batch quesues to run it on, etc. The XML files are generated by perl scripts in the task directories under $beatestPlRoot.

There is no file, script, datastructure, or anything outside the maintainer's head that codifies the global structure of it all.

Tasks launch other tasks using the $beamtestPlRoot/lib/TaskLaunch.pl script. My convention has been that I launch each task in a separate TP. The TP
and the script and wrapper that it uses have names beginning with "Launch".

The names of files registered with GINO is constrained to follow a certain format. When one task produces a file that is used as input to another task, the
name given by the first task is not the name expected by the second one. Thus, part of the process of one task launching another is to create symbolic
links with the name expected by the downstream task.

Most steps within a task (Task Processes (TPs)) consist of a wrapper, which interfaces with GINO and a script which does the work, usually by running
some external app. The digi & recon reports, and beamtest tuple, create a c-shell script and then execute it.

The code for the bt pipeline is found in /afs/slac/g/glast/ground/PipelineConfig/BeamTest-tasks/beamtestPipeline/current

The cvs repository for the code is BeamTestPipeline. It contains a modified copy of svac/svacPipeline with the following features:

based on SVAC pipeline

minimal changes necessary to make it work

The list of pipeline taks is provided below (in the alphabetical order) with the information how to run them.

Task Name: configReport

Description: Makes instrument configuration report.

Uses external app ConfigTables, which is in SAS CVS as svac/ct2.

 Purpose Associated Scripts Input Output Comments

make config report configTablesWrapper.
pl

 pipeline side

make XML file defining
task

 genXml.pl currently makes 2 XML files, LICOS version should be
removed

Task Name: digiReport

Description: Makes digitization report.

Uses external app BeamTestReport.

 Purpose Associated Scripts Input Output Comments

 make digi report genDigiTestReport.pl external side

make digi report genDigiTestReportWrapper.
pl

 pipeline side

make XML file defining
task

 genXml.pl

Task Name: digitization

Description:

 Purpose Associated Scripts Input Output Comments

determine whether to reconstruct
run

 decideRecon.pl

start digitization task genDTRLaunchWrapper.
pl

 pipeline side

make XML file defining task genXml.pl currently makes 2 XML files, LICOS version should be
removed

digitize LDF data ldfToDigi.pl external side

 digitize LDF data ldfToDigiWrapper.pl pipeline side

launch recon task recLaunchWrapper.pl pipeline side

 reprocess-v2r0.csh delete

 reprocess.csh probably delete

 reprocessEM2.csh delete

 retDefToDigiWrapper.pl LICOS stuff, not used by beamtest

 setEvents.pl LICOS stuff, not used by beamtest

 setEventsWraspper.pl LICOS stuff, not used by beamtest

Task Name: eLogupdate

Description: loads the database

 Purpose Associated Scripts Input Output Comments

 archiveWrapper.pl not used

start ConfigTables task ConfTLaunchWrapper.pl pipeline side

determine whether to digitize
run

 decideDigi.pl

make XML file defining task genXml.pl currently makes 2 XML files, LICOS version should be
removed

start digitization task ldfTDLaunchWrapper.pl pipeline side

enter run in eLog populateElogDb.pl external side

enter run in eLog populateElogDbWrapper.
pl

 pipeline side

 retDefTDLaunchWrapper.
pl

 not used by beamtest

Task Name: lib

Description:

 Purpose Associated
Scripts

Input
Output

 Comments

used by cleanupRecon.csh, gets rid of junk on one host _cleanup0ne.csh utility, not used in pipeline

clean up junk left on local disks of batch hosts by failed chunks cleanupRecon.
csh

 utility, not used in pipeline

 shared by all TPs that copy files copyWrapper.pl pipeline side

 reset eLog links to reports & ROOT files so there isn't a confusing mixed set
of versions while reprocessing

 deleteLinks.csh utility, not used in pipeline

 shared by all TPs that delete files deleteWrapper.pl pipeline side

 merge tuple chunks into single file haddMerge.py external side

 merge tuple chunks into single file haddWrapper.pl pipeline side

 makeLinks.pl not used

 look things up in eLog queryElogReport
Table.pl

 launch a task from within another task TaskLaunch.pl

 Sometimes thigs don't work, and you try again and it's fine. Usually due to
some transient NFS issue.
This script will attempt an action up to 5 times. It's used by recon to copy &
move files.

 tryAFewTimes.
csh

 change things in eLog updateElogRepor
tTable.pl

 Enter links to ROOT files and data reports into the eLog DB. updateUrl.py

 Enter links to ROOT files and data reports into the eLog DB. urlWrapper.pl pipeline side
The name of the TP using this must be the same as the name of
the DB field that will hold the URL.

Task Name: offLineTest

Description: I don't even know what this is.

 Purpose Associated Scripts Input Output Comments

 setup.csh

 test.pl

Task Name: online

Description:

The files in this directory are used to launch a run. They are intended to minimize the required knowledge of how all of this stuff works. This simplifies the
job of external systems that need to launch runs, and allows us to make internal changes without having to agree on a changed interface.

 Purpose Associated Scripts Input Output Comments

launch a run BeamTestLaunch.pl

 LicosLaunch.pl not used

 SVACLaunch.pl not used

 SVACWrapper.pl not used

 getAlgFile.pl not used

Task Name: recon

Description:

The recon task is relatively complex. It splits a run into chunks, submits each one for reconstruction as a batch job (without GINO's knowledge), then
merges the reconstructed chunks.

The first step, setupRecon, has almost all of the intelligence. It decides how many chunks to use and which events will go in which chunk. It writes a
number of files which direct the action of later steps, including jobOptions files for reconstruction of the chunks.

doRecon controls the reconstruction of the chunks. It reads a list of jobs to run, and for each one, spawns a thread that submits a batch job, waits for it to
complete, and returns its status. It then writes a file listing which, if any, of the chunks failed, and exits with an unsuccessful return code if there were failed
chunks. When the TP first starts, it checks for this list of failed chunks, and if it is present and nonempty, it uses it instead of the original list of all chunks
writted by setupRecon. This way, if some chunks fail, the TP can be rolled back and it will only need to redo the failed chunks. The failed chunk list is not
registered as a pipeline dataset, since it violates logical constraints within GINO for a TP to modify its input files.

In order to avoid problems with unreliable NFS service, the chunk jobs copy the input digi file to a local disk on the batch host (if it has one, I think they all
do now) and writes the output files there as well. It then moves the output files to a staging directory on AFS, and deletes the local copy of the input
file. When chunks fail, these files are left behind and eventually fill up the local disk. Therefore, there is a script to seek out and delete these orphaned
files. It must run as user glastdpf. I usually log into a noric as glastdpf and run it by hand every once in a while, but a better solution would probably be to
wrap it in a task and run that task every night from my crontab.

Space on the AFS staging disk is a bottleneck on how fast we can run data through the pipeline. It is shared by the SVAC and beamtest pipelines.

Merging the chunks of the recon file uses 4 TPs. The first (mergeRecon) performs the actual merge, from chunk files on the staging disk to a recon file on
the staging disk. The second deletes the chunk files from the staging disk. The third copies the merged recon file from the staging disk to its final
destination on NFS. The fourth deletes the merged file from the staging area. This may seem unreasonably complicated, but it reduces the amount of
work that must be redone on a rollback, and in some cases a rollback wouldn't work otherwise - we used to get situations where something would fail after
the chunks had ben deleted, and we'd have to redo the reconstruction. Deleting the chunk and staged merged files could be done in a single TP at the
end of the sequence, but doing it this way saves space on the staging disk.

Once the recon file is merged & moved, the reconReport and svac or beamtest tuple tasks are launched so that the can run while later steps are
happening.

Merit and CAL files are merged in 4 TPs each, similarly to recon, but these files have a sufficiently simple structure that they can be merged with hadd
instead of the custom pyRoot script used for recon.

3 more TPs enter URLS for the recon, merit, and CAL files into the eLog DB.

The final step (cleanup) just removes directories that were created in the staging area by the setup step. If the directories are not empty, the attempt to
remove them will fail. This indicates that there was a problem ealier in the task. This should be investigated before removing the offending files by hand
and doing a rollback.

 Purpose Associated Scripts Input Output Comments

 finish up a run cleanup.py external side

finish up a run cleanupWrapper.pl pipeline side

control job for reconstruction of
chunks

 doRecon.pl external side

control job for reconstruction of
chunks

 doReconWrapper.pl pipeline side

launch reconReport task genRTRLaunchWrapper.
pl

 pipeline side

make XML config file for task genXml.pl

 merge chunks of recon file mergeRecon.py external side

 merge chunks of recon file mergeReconWrapper.pl pipeline side

 recon.py obsolete

 reconstruct one chunk recon0ne.csh

 reconWrapper.pl obsolete

 reprocess-licos.csh delete

 reprocess-v3r1p5.csh delete

 reprocess-version.csh delete

 launch beamtestTuple task RunRALaunchWrapper.pl pipeline side

 prepare chunk jobs setupRecon.py external side

 prepare chunk jobs setupReconWrapper.pl pipeline side

Task Name: reconReport

Description: Makes recon report.

Uses external app BeamTestReport.

 Purpose Associated Scripts Input Output Comments

 make recon report genReconTestReport.pl external side

make recon report genReconTestReportWrapper.
pl

 pipeline side

make XML file defining
task

 genXml.pl

Task Name: setup

Description:

 Purpose Associated Scripts Input Output Comments

setup for database access dbSetup8.cshrc Oracle 8, used by Python
scripts

 setup for database
access

 dbSetup10.cshrc Oracle 10, used by Perl scripts

master setup file svacPlSetup.cshrc used by everything

Task Name: svacTuple

Description: Makes beamtest tuple

Uses external app BeamTestTuple (part of BeamTestRelease).

 Purpose Associated Scripts Input Output Comments

make beamtest tuple RunRootAnalyzer.pl external side

make beamtest tuple RunRootAnalyzerWrapper.
pl

 pipeline side

make XML file defining
task

 genXml.pl

 reprocess-licos-v3r5p5.pl delete

 reprocess-v3r4p6.csh delete

 reprocess.csh delete

	Beam Test Pipeline

