
psana - Migration from pyana

Recommended Next Topics

psana

Introduction
Data types and access methods
Difference in configuration file
Constructor arguments and configuration data

Pyana
Psana

Access to data in pyana and psana
Event data access in pyana
Event data access in psana
Access to configuration objects in pyana
Access to configuration objects in psana

Differences in data classes
Acqiris
Bld
CsPad
CsPad2x2
EPICS
Evr
Pnccd
Princeton
Imp
Ipimb
Timepix
Opal1k
All other modules

Interactive psana
References

Introduction
Offline analysis software for LCLS data historically pass a few stages;

myana – the first C-based package,
pyana – python-based framework,
psana - Original Documentation – C++-based framework.
Currently, features of both frameworks are combined together under the unified
psana - Original Documentation – framework, which works both with C++ and python modules.
This new framework allows data processing using advantage of both C++ and python modules. However, there is no full backward compatibility
between new framework and modules. Original modules would not work directly in psana - Original Documentation pyana pyana psana - Original

, they need to be changed. In this note we discuss the difference between and python- Documentation pyana psana - Original Documentation
modules and present the references to documentation, which help to migrate from to python- .pyana psana - Original Documentation

Data types and access methods
LCLS data types have different implementation in pyana and python-psana. Auto-generated from source code documentation is available in

https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/ for pyana and
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/ for python-psana.

Code of examples can be found in the packages

https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/pyana_examples#trunk/src - pyana_examples, and
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/psana_examples#trunk/src - psana_examples.
From this documentation it is clear that there is no full backward compatibility between these libraries; data types and access methods are
different. Below we present a list of references with code examples for both frameworks.

https://confluence.slac.stanford.edu/display/PSDM/psana
https://confluence.slac.stanford.edu/display/PSDMInternal/myana
https://confluence.slac.stanford.edu/display/PSDMInternal/pyana
https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Original+Documentation
https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Original+Documentation
https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Original+Documentation
https://confluence.slac.stanford.edu/display/PSDMInternal/pyana
https://confluence.slac.stanford.edu/display/PSDMInternal/pyana
https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Original+Documentation
https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Original+Documentation
https://confluence.slac.stanford.edu/display/PSDMInternal/pyana
https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Original+Documentation
https://confluence.slac.stanford.edu/display/PSDMInternal/pyana
https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Original+Documentation
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/pyana_examples#trunk/src
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/psana_examples#trunk/src

Difference in configuration file
Configuration file in both frameworks is starting from section or followed by the list of parameters. The list of parameters is pyana psana modules
different for historical reasons. When python modules are designed to support both frameworks, both sections may be presented in the same configuration
file. Alien section is ignored at run time of each framework. Example of these sections in the same configuration file:

[pyana]
files = /reg/d/psdm/xcs/xcs72913/xtc/e265-r0049-s00-c00.xtc /reg/d/psdm/xcs/xcs72913/xtc/e265-r0049-s04-c00.
xtc /reg/d/psdm/xcs/xcs72913/xtc/e265-r0049-s05-c00.xtc
num-events = 500
#skip-events = 0
#num-cpu = 1
verbose = 1
modules = py_img_algos.tahometer py_img_algos.cspad_arr_producer py_img_algos.cspad_image_producer py_img_algos.
image_save_in_file

[psana]
files = exp=xcs72913:run=49
events = 500
#skip-events = 0
modules = py_img_algos.tahometer py_img_algos.cspad_arr_producer py_img_algos.cspad_image_producer py_img_algos.
image_save_in_file

A few differences can be clearly seen:

psana accepts both forms for , - only explicit list of files.files pyana
Parameter for number of events has different name and for and , respectively.events num-events psana pyana
verbose mode currently works for only. Logger does not have interface in yet.pyana psana
psana currently does not support multiprocessor mode .num-cpu

Constructor arguments and configuration data

Pyana

Original pyana design used constructor arguments to pass configuration parameters to user modules. Typical user module defined its method __init__
with a number of arguments with many or all of them having default values:

class user_module(object):

 def __init__(self, source, threshold="0.25", max_count="1000"):
 self.source = source
 self.threshold = float(threshold)
 self.max_count = int(max_count)

The arguments that do not provide default values must be specified in the configuration file, arguments with the default values can be overriden by the
values from configuration file. Suppose that configuration files contains this:

[user_package.user_module]
source = SrcString
threshold = 1.25

Then psana will instantiate user module with the parameters and argument user_module(source="SrcString", threshold="1.25") max_count
will use default value from method declaration. Note that all arguments are passed as string values, no conversion to integers or floating point numbers is
performed.

Starting with the release pyana was modified to support different style of access to configuration information. In addition to receiving ana-0.9.6
configuration parameters through constructor arguments one can also use few special methods of the module class to obtain the values of the parameters.
These methods are:

self.configBool
(param_name[,
default])

returns value of parameter as a boolean value, strings "yes", "true", "True", "on", "1" represent true value, strings "no", "false", "False", "off", "0"
represent false value, any other string will raise exception. If parameter is not defined in a file then default value is returned without conversion, if
default value was not given then exception is raised.

https://confluence.slac.stanford.edu/display/PSDMInternal/pyana
https://confluence.slac.stanford.edu/display/PSDMInternal/psana+modules

self.configInt
(param_name[,
default])

returns value of parameter as integer value. If parameter is not defined in a file then default value is returned without conversion, if default value
was not given then exception is raised. If conversion from string to integer fails the standard exception is raised.

self.
configFloat
(param_name[,
default])

returns value of parameter as floating point value. If parameter is not defined in a file then default value is returned without conversion, if default
value was not given then exception is raised. If conversion from string to floating point fails the standard exception is raised.

self.configStr
(param_name[,
default])

returns value of parameter as string. If parameter is not defined in a file then default value is returned without conversion, if default value was not
given then exception is raised.

self.configSrc
(param_name[,
default])

returns value of parameter as "source address" string. If parameter is not defined in a file then default value is returned without conversion, if
default value was not given then exception is raised. This method does the same as but it may also check correctness of the self.configStr
source string format.

self.
configListBool
(param_name)

returns value of parameter as a list of boolean values. If parameter is not defined in a file then empty list is returned, otherwise every word in a
parameter value is converted to boolean (according to same rules as defined for) and all values are returned in one list.self.configBool

self.
configListInt
(param_name)

returns value of parameter as a list of integers. If parameter is not defined in a file then empty list is returned, otherwise every word in a parameter
value is converted to integers and all numbers are returned in one list. Conversion errors will raise exception.

self.
configListFloat
(param_name)

returns value of parameter as a list of floating point numbers. If parameter is not defined in a file then empty list is returned, otherwise every word
in a parameter value is converted to float and all numbers are returned in one list. Conversion errors will raise exception.

self.
configListStr
(param_name)

returns value of parameter as a list of strings. If parameter is not defined in a file then empty list is returned, otherwise parameter value is split into
words which are returned in one list.

self.
configListSrc
(param_name)

returns value of parameter as a list of "source address" strings. If parameter is not defined in a file then empty list is returned, otherwise parameter
value is split into words which are returned in one list.

These methods are "magic" in a sense that they are not defined by the module itself but instead are generated by the framework.

As the values of the configuration parameters can be obtained from the above methods defining arguments in the constructor is no longer necessary.
pyana now supports modules which have empty argument list of the method (except for argument). The constructor of the example __init__ self
module above can be now defined as:

class user_module(object):

 def __init__(self):
 self.source = self.configStr('source') # no default - must be defined in a config file
 self.threshold = self.configFloat('threshold', 0.25)
 self.max_count = self.configInt('max_count', 1000)

This style should be preferred in pyana and it provides easier migration to psana.

Psana

The situation with the arguments and configuration parameters in psana is opposite to the pyana situation - Pyhton modules in psana are not supposed to
define any arguments for the constructor and they should use methods defined above to access values of the configuration parameters. Like in pyana
these methods are "magic" as they are defined by the framework itself and not by the module itself or its base classes. Unlike in pyana the methods self.

 and return instances of instead of string, this class is used as an argument to configSrc() self.configListSrc() classpsana.Source evt.
 method in psana.get()

As a compatibility feature psana supports "old pyana style" of the constructor which receives configuration parameters via constructor arguments. This
means that old pyana modules can work unchanged in this respect (but will still require changes for data access). This compatibility feature may be
removed in the future as it may have unexpected implications, so it is much better to switch to the new psana style, especially that pyana now also
supports this style.

Access to data in pyana and psana
There are very significant differences between pyana and psana in how the data are retrieved from the framework (via event and environment structues)
and the format of the data classes. psana shares framework and data definition with C++ implementation and many things are closer to C++ interface than
to the pyana (which is inspired by pdsdata). Here we discuss differences in retrieving the data.

Event data access in pyana

https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#class-psana-source

1.

2.

1.

2.

3.

4.

Pyana was designed based on pdsdata and myana and originally provided methods of data access which looked similar to those defined in myana. In
particular event object provided a for some (but not all) individual data types, e.g. number of specialized methods evt.getAcqValue(address,

 for accessing Acqiris data, for accessing FEE gas detector data. In addition to these specialized methods there channel,env) evt.getFeeGasDet()
is a generic method which can be used to retrieve any type of data. There are two "overloads" of this method:evt.get(, address:string)typeId

evt.get(typeId:int, address:string) which takes integer number for the first argument and "source address" string for second
argument. Integer number is an XTC value such as . This method retrieves detector data of the type TypeId xtc.TypeId.Type.Id_Frame
corresponding to the coming from a device that matches source address.TypeId
evt.get(key:string[, default=None]) which takes a string for the first argument and optionally any object for second argument. This
method retrieves "user data" object from event which was stored in the event by user module with by calling with the evt.put(object, key)
same string key.

Best way to access event data in pyana is to use generic method and not specialized methods, it would be much easier to migrate this code evt.get()
later to psana. Here is an example of this:

from pypdsdata import xtc
......
 src = self.configSrc('source', '')
 data = evt.get(xtc.TypeId.Type.Id_FEEGasDetEnergy, src)
 if data:
 print " f_11_ENRC =", data.f_11_ENRC

Event data access in psana

Psana does not provide any specialized methods for retrieving individual data types, instead it provides generic method whose is evt.get() interface
much closer to that of C++ class, though it also provides few overloads for pyana compatibility. There are several "overloads" of this method depending on
the number and types of parameters:

evt.get(type, src[, key:string]) where is python class corresponding to the data type (or list of classes), e.g. type psana.Camera.
. The argument must be an instance of type which provides a match for device address, is FrameV1 src psana.Source psana.Source

returned from method. If argument is provided then it must be a string, missing key argument is identical to empty self.configSrc(...) key
string.
evt.get(type[, key:string]) - variation of the above method without source argument. This method is used to retrieve data which is not
associated with any device but is a property of the event as a whole. Good example of this kind of data is the object.psana.EventId
self.get(typeId:int, addr:string) - this is pyana-compatibility method and should only be used during migration or in the code which is
supposed to run in both pyana and psana. This method is equivalent to pyana method . Note that in psana there evt.get(, address)TypeId
will be data types which do not have corresponding TypeId, this method cannot be used with those types (TypeId is a property of XTC data types,
other data types do not have TypeId).
self.get(key:string) - this is pyana-compatibility method and should only be used during migration or in the code which is supposed to run
in both pyana and psana. This method is equivalent to pyana method and is used to retrieve data stored with evt.get(key, None) evt.put

.(object, key)

psana example corresponding to the above pyana example which retrieves gas detector data should look like:

The list of currently available can be seen in the file .TypeId TypeId.cpp
The list of -s available in xtc file can be obtained by the command:Source

psana -m EventKeys <path-to-xtc-file>

The list of currently available can be seen in the file .TypeId TypeId.cpp
The list of and arguments available in xtc file can be obtained by the command:type src

psana -m EventKeys <path-to-xtc-file>

The type name printed like should be used in code as ...Psana::Ipimb::DataV2 psana.Ipimb.DataV2

https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/pyana/#class-pyana-event-event
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/pypdsdata/trunk/pyext/TypeId.cpp
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/pypdsdata/trunk/pyext/TypeId.cpp
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/pypdsdata/trunk/pyext/TypeId.cpp
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#class-psana-event
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/pypdsdata/trunk/pyext/TypeId.cpp
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/pypdsdata/trunk/pyext/TypeId.cpp
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/pypdsdata/trunk/pyext/TypeId.cpp

1.

2.

this is psana code, will not work in pyana
import psana
....
 src = self.configSrc('source', '')
 data = evt.get(psana.Bld.BldDataFEEGasDetEnergy, src)
 if data:
 print " f_11_ENRC =", data.f_11_ENRC() # note method call

If one wants to write the code that should work in both pyana and psana then some modification of the pyana example should do:

from pypdsdata import xtc
......
 src = self.configSrc('source', '')
 data = evt.get(xtc.TypeId.Type.Id_FEEGasDetEnergy, src)
 if data:
 if env.fwkName() == 'pyana':
 print " f_11_ENRC =", data.f_11_ENRC
 else:
 print " f_11_ENRC =", data.f_11_ENRC()

Note that there is a code specific to each framework and this is related to the differences in the data object interfaces.

Access to configuration objects in pyana

Just like event class the in pyana provides a number of specific method for individual data types and a generic method which works for environment class
any data type. Specific methods should not be used frequently, one should prefer to use generic method. Generic method has this definition:

env.getConfig(typeId:int[, address=None]) - takes integer number for the first argument and optional string for second. Integer
number is an XTC TypeId value such as (note that values for event data and configuration data are xtc.TypeId.Type.Id_AcqConfig TypeId
different). This method retrieves configuration data of the type corresponding to the coming from a device that matches source address.TypeId

An example:

from pypdsdata import xtc
......
 src = self.configSrc('source', '')
 config = env.getConfig(xtc.TypeId.Type.Id_AcqConfig, src)
 if config:
 print "config.nbrChannels =", config.nbrChannels()

Access to configuration objects in psana

To access configuration data in psana there are two methods available: "true psana" and pyana-compatibility.

For code which runs in psana only it is better to use "true psana" method which consists in first getting access to special "config store" object and second
retrieving data from that store object. To acees store object one should call method without parameters which returns the instance env.configStore()
of the class. This class defines method which is a simplified version of method and has these overloads:EnvObjectStore get() evt.get()

store.get(type, src) where is python class corresponding to the configuration data type (or list of classes), e.g. type psana.Acqiris.
. argument must be an instance of type which provides a match for device address.Config src psana.Source

self.get(typeId:int[, address:string=""]) - this is pyana-compatibility method and should only be used in the code which is
supposed to run in both pyana and psana. This method is equivalent to pyana method .env.getConfig(TypeId, address)

For pyana compatibility environment also defines method which is a shortcut for , this method evt.getConfig(...) env.configStore().get(...)
should only be used in a code which should run in both pyana and psana.

Here is a psana example for accessing the same Acqiris configuration data:

Specific data attributes, like , can be found in the code reference for and , respectively.f_11_ENRC() psana pyana

https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/pyana/#class-pyana-event-env
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/pypdsdata/trunk/pyext/TypeId.cpp
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/pypdsdata/trunk/pyext/TypeId.cpp
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#psana.EnvObjectStore
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/

import psana
......
 src = self.configSrc('source', '')
 config = env.configStore().get(psana.Acqiris.Config, src)
 if config:
 print "config.nbrChannels =", config.nbrChannels()

Previous pyana example is supposed to work in psana without change.

Differences in data classes
Tables below provide summary of differences between data objects inside pyana and psana.

For pyana the pieces of code imply that following import statement appears somewhere in the module file:

from pypdsdata import xtc

for psana this import should be replaced with

from psana import *

In pyana and accept string for argument while in psana the type of the argument must be . In evt.get() env.getConfig() source psana.Source
both pyana and psana the source address can be set with as this method returns correct type in each framework:self.configSrc()

 self.m_src = self.configSrc('source', '')

As it is discussed above pyana code can be run inside psana in compatibility mode. In this case the code needs changes only if data classes provide
different interfaces.

Acqiris

pyana psana

_pdsdata.acqiris Psana.Acqiris

 config = env.getConfig(xtc.TypeId.Type.Id_AcqConfig, self.m_src) config = env.configStore().get(Acqiris.Config, self.m_src)

acqData = evt.get(xtc.TypeId.Type.Id_AcqWaveform, self.m_src) acqData = evt.get(Acqiris.DataDesc, self.m_src)

access to data also differs...

Bld

pyana psana

_pdsdata.bld Psana.Bld

 data = evt.get(xtc.TypeId.Type.Id_FEEGasDetEnergy, self.m_src) data = evt.get(Bld.BldDataFEEGasDetEnergy, self.m_src)

data = evt.get(xtc.TypeId.Type.Id_EBeam, self.m_src) data = evt.get(Bld.BldDataEBeam, self.m_src)

data = evt.get(xtc.TypeId.Type.Id_PhaseCavity, self.m_src) data = evt.get(Bld.BldDataPhaseCavity, self.m_src)

data = evt.get(xtc.TypeId.Type.Id_GMD, self.m_src) data = evt.get(Bld.BldDataGMD, self.m_src)

CsPad

pyana psana

https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/_pdsdata/#module-_pdsdata.acqiris
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#module-psana.Acqiris
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/_pdsdata/#module-_pdsdata.bld
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#module-psana.Bld

_pdsdata.cspad Psana.CsPad

config = env.getConfig(TypeId.Type.Id_CspadConfig, self.m_src) config = env.configStore().get(CsPad.Config, self.
m_src)

quads = evt.get(TypeId.Type.Id_CspadElement, self.m_src) data = evt.get(CsPad.Data, self.m_src)

for q in quads : data = q.data() # image data as 3-dimentional array
of the shape (N, 185, 388)

list_of_masks = [config.roiMask(q) for q in range(4)] list_of_masks = [config.roiMask(q) for q in range
(4)]

print " numQuads =", config.numQuads(); nQuads = data.quads_shape()[0] # etc.

for i in range(nQuads): q = data.quads(i); data_arr = q.data() # etc. for i in range(nQuads): q = data.quads(i); data_arr
= q.data() # etc.

CsPad2x2

pyana psana

_pdsdata.cspad2x2 Psana.CsPad2x2

config = env.getConfig(xtc.TypeId.Type.Id_Cspad2x2Config, self.m_src) (works the same) config = env.getConfig(CsPad2x2Config,
self.m_src)

print " roiMask =", config.roiMask() roiMask = config.roiMask()

elem = evt.get(xtc.TypeId.Type.Id_Cspad2x2Element, self.m_src) elem = evt.get(CsPad2x2.Element, self.m_src)

data = elem.data() # image data as 3-dimentional array of the shape
(185, 388, 2)

data = elem.data()

{{}} {{}}

EPICS

pyana psana

 _pdsdata.epics Psana.Epics

{{}} {{}}

Evr

pyana psana

 _pdsdata.evr Psana.EvrData

{{}} {{}}

Pnccd

pyana psana

 _pdsdata.pnccd Psana.PNCCD

{{}} {{}}

Princeton

pyana psana

 _pdsdata.princeton Psana.PNCCD

{{}} {{}}

Imp

pyana psana

https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/_pdsdata/#module-_pdsdata.cspad
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#module-psana.CsPad
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/_pdsdata/#module-_pdsdata.cspad2x2
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#module-psana.CsPad2x2
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/_pdsdata/#module-_pdsdata.epics
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#module-psana.Epics
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/_pdsdata/#module-_pdsdata.evr
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#module-psana.EvrData
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/_pdsdata/#module-_pdsdata.pnccd
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#module-psana.PNCCD
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/_pdsdata/#module-_pdsdata.Princeton
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#module-psana.Princeton

_pdsdata.imp Psana.Imp

self.m_src = self.configSrc('source', ':Imp') self.m_src = self.configSrc('source', ':Imp')

config = env.getConfig(xtc.TypeId.Type.Id_ImpConfig, self.m_src) config = env.configStore().get(Imp.Config, self.m_src)

data = evt.get(xtc.TypeId.Type.Id_ImpData, self.m_src) data = evt.get(Imp.Element, self.m_src)

 print "TrigDelay =", config.get(imp.ConfigV1.Registers.TrigDelay) print " trigDelay =", config.trigDelay() # etc.

print "frameNumber =", data.frameNumber() print " frameNumber =", data.frameNumber() # etc.

Ipimb

pyana psana

 _pdsdata.ipimb Psana.Ipimb

{{}} {{}}

Timepix

pyana psana

 _pdsdata.timepix Psana.Timepix

{{}} {{}}

Opal1k

pyana psana

 _pdsdata.opal1k Psana.Opal1k

{{}} {{}}

All other modules

pyana psana

 _pdsdata modules Psana modules

Interactive psana
Interactive psana is available beginning from ana-0.9.0.release
Example of how to start interactive python-psana:

% ipython
from psana import *
help(psana.CsPad)

References
Auto-generated documentation for pyana modules: https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/
Auto-generated documentation for python modules in psana: https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/
Package pyana_examples: https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/pyana_examples#trunk/src
Package psana_examples: https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/psana_examples#trunk/src

ples: https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/psana_examples#trunk/src

https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/_pdsdata/#module-_pdsdata.imp
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#module-psana.Imp
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/_pdsdata/#module-_pdsdata.ipimb
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#module-psana.Ipimb
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/_pdsdata/#module-_pdsdata.timepix
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#module-psana.Timepix
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/_pdsdata/#module-_pdsdata.opal1k
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/psana/#module-psana.Opal1k
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/_releases
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/pyana-ref/html/
https://pswww.slac.stanford.edu/swdoc/releases/ana-current/psana-ref/html/
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/pyana_examples#trunk/src
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/psana_examples#trunk/src
https://pswww.slac.stanford.edu/trac/psdm/browser/psdm/psana_examples#trunk/src

	psana - Migration from pyana

