Outdated: The XTC to HDF5 Translator

<documentation/link to new procedure to follow>

® [ntroduction
® Running the Translator
o Calibrations
© Running by Hand
© Split Scan Mode / Monitoring Translator
" Running Split Scan
® batch arguments
How many processes to use?
Translator arguments
Operation
Calib files in sub directory
® Live Data and Fast Indexing
® Reading While Translating
= EndData and Split Translation
= Working with External Links

® Presentations
® Advanced Features
© Calibrated Data
= Filtering Calibrated Data
© PNCCD::FullFrame
® Filtering Events
© Filtering from Python Modules
Filtering Types
Src Filtering
Type/Src (EventKey) filtering
Writing User Data
o Event vs. ConfigStore, EndData subgroups
© NDArrays and Strings
® Fixed Dimensions vs. Variable Dimensions
® Psana Configuration File and all Options
® Translation and Damage

Introduction

The primary purpose of the XTC to HDF5 translation software is to provide a thorough translation of the data recorded in the XTC files of a LCLS
experiment to the more general scientific format HDF5. Users can then analyze their data using any tool that supports HDF5, at SLAC or offsite. Important
points to make about the Translator

1. By default, the Translator will apply calibration corrections to cspad and cspad2x2 detectors, but not epix or more recent detectors.
2. Options exist for users to skip calibrations and include the raw detector data.

3. Options exist to filter what detectors are translated

4. Advanced options exist for users to run their own code to produce output to be translated

However, regarding 4, new users interested in adding their own code into the translator are encouraged to look at other options. This is because the
Translator is part of the psana module framework which is being deprecated — new users will have to learn how to write psana modules to use the
Translator in this fashion. The most general alternative is to 4) is to develop your own code based on the Hdf5 building block examples that start here: Savi
ng User Data in Hdf5. Simpler would be to see if the analysis that is computed in the littleData software developed by XPP apply to your experiment. XPP
maintains a wiki: https://sites.google.com/site/xppwiki/ that includes information about the little data format, specifically here: https://sites.google.com/site
Ixppwiki/data-analysis/little-data, but best is to contact the experiment POC to see if the littleData software is applicable to your experiment.

These alternatives allow for a very simple schema that users can design themselves, as well as leveraging the analysis that XPP has developed, assuming
it applies to your experiment. The translator is recommended for users that want a complete copy of the experiment data, but in the Hdf5 format, as well
as returning users that want to leverage code developed for the Translator in the psana module framework.

The Translator should generally be run using the automatic hdf5 translation feature of the Web Portal of Experiments. Each experiment has a "HDF5
Translation" tab that provides this interface. Below we discuss features of the Translator for customization of the translation - filtering unwanted events or
detectors as well as adding processed data. The web portal provides a mechanism to customize the translation using these features. Experiment POC's
should be able to help with using these features.

A discussion of the hdf5 output format for translator can be found here:
The contents of HDF5 files - the output format. Users that will work with hdf5 output should review this document. Some key points are:
® Datasets need not be aligned. That is the 5th image in a detector dataset may come from a different event than the 5th record in a gas detector
dataset. One can match up records from different datasets by use the time datasets.

® One should use the _mask datasets to identify valid data. A _mask dataset record is 1 when the corresponding record of the data dataset if valid,
0 if it is not. When the _mask record is 0, the data record will be all zeros and should not be processed. The mask is 0 when the xtc data is

http://www.hdfgroup.org/HDF5/
https://confluence.slac.stanford.edu/display/PSDM/Saving+User+Data+in+Hdf5
https://confluence.slac.stanford.edu/display/PSDM/Saving+User+Data+in+Hdf5
https://sites.google.com/site/xppwiki/
https://sites.google.com/site/xppwiki/data-analysis/little-data
https://sites.google.com/site/xppwiki/data-analysis/little-data
https://pswww.slac.stanford.edu/apps/portal
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=54788730

damaged. The type damaged data can then be found in the _damage dataset. The main reason to record blanks in the data datasets when
damage occurs is to keep datasets as aligned as possible.

* The hdf5 group hierarchy has the following levels: run, calib cycle. type, source - regular event data is organized into datasets that live at the
source level. Epics is special, rather then the two groups type and source, there are three groups for epics: type, source and epics pv name.
Epics aliases live alongside epics pv names in this group hierarchy. Finally configuration data (that usually arrives once) is found in subgroups to
the configure groups at the top of the hdf5 hierarchy.

Running the Translator

Generally, users should use the HDF5 Translation tab for their experiment on the web portal of experiments. This allows users to automatically translate
runs as they become available and are in progress. In addition, Translation can produce large amounts of data that needs to be managed by LCLS. The
HDF5 Translation page includes two options for translation - standard and monitoring. Most users will use standard. The differences are, when run through
the web portal:

® Standard translator:
o directly reads the large xtc files
© does not start until the xtc files start to appear on the offline file system
© translation jobs run in the psana queue (fast network link to read)
O output is to the ana file system (fast network link to write)
O output is one Hdf5 file per run in the experiments hdf5 folder
© the hdf5 files are added to the LCLS file manager which means they are archived to tape and can be restored if they were purged from
disk.
® Monitoring translator:
© reads the small xtc files (.smd.xtc) and the large
O starts as soon as xtc files appear on the fast feedback nodes
© translation jobs run in the psnehq or psfehq, or priority queues (fast network link to read from ffb)
O output is to the ana file system (slower network link to write)
O output is a master file, and one hdf5 file per calib cycle (step)
© output is written to the experiments scratch folder. It is not backed up and is eligible for purging according to the Data Retention Policy
Version 2.

The monitoring translator is intended for Multi-calib cycle experiments. It uses MPI to translate different calib cycles in parallel. Typically users will filter the
large detectors and write smaller summary information in order to seed up translation for monitoring purposes.

Calibrations

The default behavior for the Translator is to calibrate just cspad2x2 or Full cspad. To obtain the calibrations for other area detectors, as well as to use more
recent calibration code, see Translating the Detector Interface.

Running by Hand

You can also run the translator by hand. You run it as you would any other psana module. Either through psana command line options or by writing a
psana configuration file. The module is Translator.H50utput. When using the psana command line interface to run the module, the only option that is
required to give to the Translator is the name of the output file. This must be a fully qualified filename, with the output directory. For example:

psana -m Transl at or. H5Qut put -0 Transl at or. H5Qut put . out put _fi | e=exp-run001. h5 exp=xpptut13: run=71

would invoke the translator. It will translate all the xtc files in run 71 of the xpptutl13 dataset. This runs with default values for all the translator options.
These are the recommended option values to use for translation. The options include gzip compression at level 1 and no filtering on events or data. The
Translator does not overwrite an existing h5 output file by default (set the option overwrite=true to overwrite the output). There are many different options
you can set for translation that are discussed below. The easiest way to try different translator options is to write a psana.cfg file. Later in this document,
we include a long psana config file that includes extensive documentation on all the translator options. It is recommended that users copy and modify this
document to try different options.

When running the Translator directly, you can make use of the same parallel compression library that the automatic translation system uses by setting the
following environment variables (below is for bash):

export PAZLI B_MAX_THREADS=8
export LD PRELOAD=I i bpazlib. so

before running. Automatic translation also calibrates all cspad data for which calibration constants have been deployed. To achieve this by hand, one can
load the module cspad_mod.CsPadCalib as well (it must be loaded before the Translator). When running this module, it is useful to get some of its
diagnostic messages to verify that it has found calibration files. After setting PAZLIB_MAX_THREADS and LD_PRELOAD, one could additionally set

export MSGLOGCONFI G=Cal i bDat aPr oxy=trace

before running

psana -m cspad_nod. CsPadCal i b, Transl at or. H5Qut put -0 Transl at or. H5Qut put . out put _fi | e=exp-run001. h5 exp=xppt ut 13:
run=71

to translate in the same manner as the automatic translation system. Better I/O is achieved by writing output to the scratch folder of the experiment rather
than a users home directory (on the LCSL system) and running translation through the batch system using the appropriate queue.

Split Scan Mode / Monitoring Translator

http://pswww.slac.stanford.edu/
https://confluence.slac.stanford.edu/display/PCDS/Data+Retention+Policy+Version+2
https://confluence.slac.stanford.edu/display/PCDS/Data+Retention+Policy+Version+2
https://confluence.slac.stanford.edu/display/PSDMInternal/Translating+the+Detector+Interface

The Translator supports split scan mode. In this mode, calib cycles are written to separate hdf5 files. A master file will have external links to these separate
hdf5 files. Users need only work with the master file. The master file uses the same schema as one finds without split scan mode. Little modification to
user code is required when working with the master file. What is required, is following external links (see below for tips on this). Not all experiments use
more than one calib cycle. For experiments that use one calib cycle per run, split scan mode provides no benefit. The main reason users will opt for the
split scan translator it to achieve the fastest possible translation for the purposes of online monitoring. Often, this involves custom configuration to reduce
the DAQ data translated, as well as adding results from users own code to the translation. The split scan translator is implemented using MPI and
translates different calib cycles in parallel. It has its own driver program to be launched using MPI called h5-mpi-translate. For this reason, the split scan
translator is also referred to as the monitoring translator.

The split scan translator has a master/worker architecture. The single master process reads through the data and finds where the calib cycles start. It then
assigns calib cycles to the worker pool.

Running Split Scan

The simplest way to launch the split scan translator is through the web portal of experiments - the monitoring choice on the HDF5 Translation tab. Before
covering the options available through the web page, we'll look at launching jobs by hand. Here is an example command for launching the mpi based
splitscan Translator for data that has already finished being written to the offline file system:

bsub -q psanag -n 9 -o translate_%.out npirun h5-npi-translate -m cspad_nod. CsPadCal i b, Transl at or. H5Qut put -o
Transl at or. H5Qut put . out put _fil e=nydir/split.h5 exp=xpptut13:run=71:snd

Note the use of :smd for the dataset. This allows the master process of h5-mpi-translate to index the calib cycles quickly. When running h5-mpi-translate
by hand, forgetting to add :smd will greatly degrade performance.

The first few arguments for bsub set up the batch job, everything after h5-mpi-translate are arguments for the mpi split scan translator. For the purposes of
online monitoring, we often want to translate while taking data, and we will want to use the appropriate high priority queue for the instrument our
experiment uses. These queues are psnehprior and psfehprior - for instruments in the near hall and far hall respectively. In addition, there are certain
arguments for launching the batch job that seem to increase translation speed - at the expense of using a large number of resources in the queue. An
example launch command for an XPP experiment in the near hall might look like

bsub -q psnehprior -n 9 -x -R "span[ptile=2]" -o translate_%.out npirun h5-npi-translate -m cspad_nod. CsPadCal i b,
Transl at or. H5Qut put -0 Transl at or. H5Qut put . out put _fil e=nydir/split.h5 exp=xpp7815: run=189:snd: live:dir=/reg/d/ffb
| xpp/ xppf 7815/ xt ¢

Note - it is important to make sure that the priority queues are available for experiments during their scheduled time. In particular, if one is doing online
monitoring for an experiment running during the day shift using a high priority queue, one must stop using the queue if it will be used by an experiment
running during the night shift (use the "stop all" button if translating through the web portal of experiments). At that point one would switch to doing
translation using the offline psanaq, and the offline file system rather than the ffb. Optimal I/O performance requires coordinating which queue you use with
where the data is read from, and written to. In particular, the ffb data location should only be used for the high priority queues. See Batch Nodes And
Queues for more details on the different queues, In terms of where to write data, write to an experiment folder like ftc or scratch - don't write to your home
directly.

batch arguments
The bsub batch arguments used on the priority queue are

® -x no other batch jobs run on the nodes used for this job

® -R "span[ptile=2]" only run two processes one each node.

® -n 9 use 9 processes for the job (1 will be the master, and 8 for calib cycles, up to 8 calib cycles will be translated simultaneously). The master
process is always the last process. By using 9 processes and ptile=2, and -x, the master process runs by itself on one node. No workers will be
doing I/0O on the node. This gives the master the most possible resources for its job of finding calib cycles. In general, for best performance, if n is
the number of processes and k the processes per node, (the ptile value) choose them so that n mod k ==

® The job output file (translate_39283.out, where 39283 will be whatever job number the batch system assigns) will record timing information for the
master and workers.

These arguments dedicate significant resources of the priority queue to the translation of each run to achieve the fastest possible translation. There are
two costs to this approach. The first is less resources for other jobs in the queue, like translating other runs. The second is increasing the likelihood of
failure by using a problematic node. If one of the nodes in the queue is having trouble, these options increase our odds of running a job on it. In general we
do not recommend these arguments for the offline queue: psanagq.

The translator, when compressing, spends about 70% of its time as a multi-threaded application (using 9 of the 12 cores on the nodes) - thus the ptile=2.
Even when not compression, using lower ptile values (1,2,3) seems to increase overall performance. | believe this is due to the I/O intensive nature of the
Translator. On paper, we expect our filesystem and network links to perform just as well with ptile=12 (the default) as opposed to ptile = 1,2,3, however in
practice this is not what I've seen.

How many processes to use?

Presently, the split scan translator does not dynamically request new processes as it needs them, it uses whatever pool it has been launched with (the -n
batch argument above). Consequently the user needs to pick the optimal number of processes to use. Ideally, we want a worker to be free when each new
calib cycle is discovered. Assuming the fast_index option is used (see below), and optimal batch arguments like -x, ptile=2 with an odd number of
processes are used, the master should keep up with live data at 120hz. Then it is a question of how slow the calib cycle translation is. For 1 full cspad with
compression, | would allow for 11hz to translate calib cycles. 120/11 means | want 11 workers, so n=12, and I'll make it n=13 to get the master running by
itself.

The Translator output, captured in log files by the bsub -o option, provide useful information on the translation rate for the workers, the rate the master gets
through the data, and how many calib cycles each worker translated (if you see workers that didn't translate any calib cycles, you have assigned more
processes to the translation job then the system can use).

https://confluence.slac.stanford.edu/display/PCDS/Batch+Nodes+And+Queues
https://confluence.slac.stanford.edu/display/PCDS/Batch+Nodes+And+Queues

Translator arguments

Looking again at the bsub command line:

bsub -q psanag -n 9 -o translate_%.out npirun h5-npi-translate -m cspad_nod. CsPadCal i b, Transl at or. H5Qut put -o
Transl at or. H5Qut put . out put _fil e=nydir/split.h5 exp=xpptut 13: run=71

You will see that h5-mpi-translate, rather than psana, is the driver program for mpi based split scan translation. h5-mpi-translate takes the same arguments
as psana does. In particular, h5-mpi-translate understands the -c file.cfg option so that options may be specified in a configuration file.

Operation

When h5-mpi-translate runs, one node (with the master process) will read through the data, identify the start of calib cycles, and communicate via MPI with
the other 8 nodes. The other 8 nodes will do all the translation - telling the master when they are done and ready for a new job. The master will add links to
the master h5 output file only after the separate calib files are done.

Generally, there will be one calib cycle file for each calib cycle. However to prevent too many calib cycle files from being produced for experiments that
have only a few events per calib cycle, small calib cycles are grouped into one file. They are grouped until the total number of events in the file exceeds a
threshold. The threshold defaults to around 100 but is configurable.

For the above command, assuming there are multiple calib cycles in run 71 of xpptut13 that each have at least 100 events, and that the batch job was
39283, you will produce the following files:

transl at e_39283. out
nydir/split.h5
nydir/split_cc0000. h5
nmydir/split_cc0001. h5

When moving the hdf5 files, make sure they all reside in the same directory. The links from the master to the calib cycle files assume they are in the same
directory.

Calib files in sub directory

While the split scan translator defaults to putting all files, the master file, and translated calib cycle files, into the same directory, users can optionally put
the calib files into a sub-directory. The option is "split_cc_in_subdir". For example, when translating the above datasource, if one were to use a config file
and add an option like so

[Transl at or. H5Qut put]
split_cc_in_subdir=True

Then one will get all the calib files in a directory called xpptutl3_r0071_ccfiles and the translated files there:

nydi r/ xppt ut 13- r 0071. h5
nmydi r/ xppt ut 13-r 0071_ccfil es/ xppt ut 13-r0071_cc0000. h5
nydi r/ xppt ut 13-r0071_ccfil es/ xppt ut 13-r0071_cc0001. h5

Live Data and Fast Indexing

For online analysis with live data, one of the impediments to keeping up with the data is the time it takes h5-mpi-translate's to read through the data to find
the calib cycles. As long as the user specifies :smd in the dataset (which the web portal does) this should not be a problem. A deprecated option,
fast_index, was used before we had small data. Using that option now generates an error, however if for some reason there are problems with the small
data - users can fall back on the fast_index option by specifying fast_index_force=1. Below we document this deprecated option.

Typically the data is recorded in 6 or more separate files and if the small data files are not available, each must be read through to identify the start of calib
cycles. Unfortunately this read speed can be 30-40hz for a typical experiment - far short of the 120hz we'd like to obtain. The deprecated fast_index_force
option in h5-mpi-translate takes advantage of the unique signature of each new calib cycle, combined with the regular structure of the separate data files in
order to limit the reading to just one of the files. In this way, the h5-mpi-translate master rank need only get through the large xtc data it reads/searches at
20hz to keep up with the data. Part of why fast_index is deprecated in favor of small data is that it is not guaranteed to work - in particular high level of
damaged data degrades the regular structure of the DAQ files. This in turn will increase the fastindex search time to the point where it is no longer useful,
or fails.

fast_i ndex_force =1 # do the fast indexing, be default it is off

fi _nb_hal f _bl ock=12 # when fast indexing is on, use 12MB on each side, or 24MB for each block that is
sear ched

fi _num bl ocks=40 # this it half the nunber of 'other' blocks to try. The translator will try 1 +

2*40 = 81 blocks if this is 40 (about 1GB total search)

To obtain More information can be found in the Psana Configuration File and All the Options section below.

http://xpptut13run=71

Reading While Translating

HDF5 presently has little support for reading a file that is being created, and in general does not recommend this. However the master file is written in a

way to support this as well as possible. When using the MPI split scan translator, links are not added to the master file until after the calib files are done.

Thus it is always safe to traverse those links. To see updates in the master file, users may need to shut down programs like Matlab and h5py and restart
them. That is it may not be sufficient to close and reopen the master file within a Python or Matlab session.

EndData and Split Translation

The EndData feature, discussed below, provides a way for Psana user modules to translate data during beginRun and endRun. However in split scan
mode, each calib cycle is translated by a separate translator, and each separate translator will create an independent instance of any Psana modules that
have been specified in the h5-mpi-translate command line. Consequently if a Psana module outputs summary information during endRun, it will not be
summary information for the whole run, just those calib cycles translated by the Translator that loaded it. Moreover the master file will make a link to the
first EndData within Run:0000 that it finds. That is, if there are 10 different external calib cycle files, with 10 different EndRun groups, there will be a link to
only one of them from the master file.

Working with External Links

When working with the master file, it is necessary to follow external links. For instance, to get a recursive listing of all the groups in the output file using
h5Is, one must do

h5Is -r -E master.h5

as opposed to h5Is -r file.h5. The -E option instructs h5Is to follow external links. Similar functionality should exist in h5py, Matlab, and other software that
works with HDF5.

Presentations

Attached is a link to a presentation given during the LCLS 2014 users meeting. It goves over dataset alignment as well as new features: Using_the_HDF5_
Translator.pdf

Advanced Features

filter out whole events from translation

filter out certain data, by data type, or by data source, or key string

write ndarray's that other modules add to the event store or configStore

write std::string's that other C++ modules add to the event store or configStore
include summary data for calib cycles

Calibrated Data

Calibration is handled by external psana modules. These modules will produce calibrated data and the translator will find it and translate it to the hdf5 file.
Understanding this flow of data is not necessary for automatic translation, however if users want to customize calibration, some understanding of how
psana modules pass data through the event store, and are configured through config files is necessary. The calibrated data will be distinguished from
uncalibrated data with the use of a key in the event store. The key defaults to the value ‘calibrated' but this is configurable through the psana.cfqg file, in the
section for the calibration module used. the translator provides special treatment for the calibration key. For the translator, the default value for the
calibration key is 'calibrated' as well, but again, this is configurable through the psana.cfg file, in the section for Translator.H50utput. If the translator sees
data with the key calibrated - it defaults to only translate data with the calibrated key and not the raw data. In the hdf5 file, one will find calibrated data
where one would have otherwise found uncalibrated data. The calibrated key is not present in the hdf5 path names. This is different than what one finds
for keys with ndarrays. For ndarrays the key is part of the h5 path name (see below). The the translator option skip_calibrated can be set to true to get the
uncalibrated data instead of calibrated data.

Calibration makes use of calibration constants - such as pedestals and pixel status. A key difference between the translator and o2o-translate is where
these calibration constants are found, and the datatypes used to store them. For the translator they are found in the group CalibStore to the current
configure group. For example, if we translate the first event in a run of the cxi tutorial data where we add the cspad calibration module before the the
translator module:

psana -n 1 -m cspad_nod. CsPadCal i b, Transl at or. H5Qut put -0 Transl at or. H5Qut put . out put _fil e=cal i b. h5 exp=xpptut 13:
run=71

Then we will see

https://confluence.slac.stanford.edu/download/attachments/143919130/Using_the_HDF5_Translator.pdf?version=1&modificationDate=1423763340000&api=v2
https://confluence.slac.stanford.edu/download/attachments/143919130/Using_the_HDF5_Translator.pdf?version=1&modificationDate=1423763340000&api=v2
http://xpptut13run=71
http://xpptut13run=71

h5l's -r calib.h5 | grep -i "calibstore\|cspad" # this command will include the follow ng output

/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ CsPad2x2: : El ement V1/ XppGon. 0: Cspad2x2. 0/ coomon_node Dat aset {1/Inf}
/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ CsPad2x2: : El ement V1/ XppCGon. 0: Cspad2x2. 0/ dat a Dataset {1/1nf}
/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ CsPad2x2: : El ement V1/ XppGon. 0: Cspad2x2. 0/ el ement Dat aset {1/1nf}

/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ CsPad2x2: : El ement V1/ XppGon. 0: Cspad2x2. 1/ conmon_node Dat aset {1/Inf}
/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ CsPad2x2: : El ement V1/ XppGon. 0: Cspad2x2. 1/ dat a Dat aset {1/1nf}
/ Conf i gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ CsPad2x2: : El ement V1/ XppCon. 0: Cspad2x2. 1/ el enent Dataset {1/Inf}

/ Confi gure: 0000/ Cal i bSt or e/ pdscal i bdat a: : CsPad2x2Pedest al sV1/ XppGon. 0: Cspad2x2. 0/ pedest al s Dataset {185, 388, 2}
/ Confi gure: 0000/ Cal i bSt or e/ pdscal i bdat a: : CsPad2x2Pedest al sV1/ XppGon. 0: Cspad2x2. 1/ pedest al s Dat aset {185, 388, 2}
/ Confi gure: 0000/ Cal i bSt or e/ pdscal i bdat a: : CsPad2x2Pi xel St at usV1/ XppGon. 0: Cspad2x2. 0/ st at us Dat aset {185, 388, 2}
/ Confi gure: 0000/ Cal i bSt or e/ pdscal i bdat a: : CsPadCormponMbdeSubV1/ XppGon. 0: Cspad2x2. 0/ dat a Dat aset {SCALAR}

Things to note:
® There are common_mode datasets included with the data
® Both cspad sources have a pedestal dataset in CalibStore
® Only XppGon.0:Cspad2x2.0 has a common mode dataset in the calibstore.

When one looks at the common_mode dataset for XppGon.0:Cspad2x2.1, one sees the values are -10000, indicating no common mode calibration was
done. Documentation on the CsPadCalib module is found in psana - Module Catalog.

An issue users may run into is understanding what calibration was done and recovering the raw data just from examining the hdf5 output. In the case of

cspad, an understanding of the CsPadCalib module along with the what is in the hdf5 file does allow one to recover the uncalibrated data. This may not be
possible with other calibration modules and detectors, in particular if nonlinear calibration algorithms are applied, such as applying a threshold.

Filtering Calibrated Data

By default, when the Translator sees both the original xtc data and a calibrated version of it, it writes the calibrated data in place of the xtc data. For
automatic translation, we always load the module that will calibrate cspad if possible. If users do not want the calibrated data but prefer the raw data, they
can set the option

skip_calibrated = true

If the user wants neither the calibrated nor the raw cspad, they they should use type filters, that is setting

Cspad = exclude
Cspad2x2 = exclude

There will be no cspad in the translation (including the cspad configuration data as well as event data). This can be useful if one is using other modules to
produce ndarrays from the calibrated data and one only wants the final processed ndarrays in the translation.

PNCCD::FullFrame

This data is no longer translated. FullFrame is a copy of Frames with a more convenient interface for psana users, it is not considered to be as useful for
hdf5 files. User's interested in having FullFrame written into their hdf5 files rather than the original Frames data should make a feature request.

Filtering Events

Since the translator runs as a psana module, it is possible to filter translated events through psana options and other modules. psana options allow you to
start at a certain event, and process a certain number of events. Moreover a user module that is loaded before the Translator module can tell psana that it
should not pass this event on to any other modules, hence the Translator.H50utput module will never see the event and it will not get translated.

One can also filter events by putting an object in the event store with a special key string. To use this mechanism, a module must put an object in the
eventStore with a key that starts with

do_not _transl ate

For example, if a C++ module implements the event method to do the following:

https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Module+Catalog

filtering

virtual void event(Event& evt, Env& env) {

boost: : shared_ptr<int> dumyVari abl e = boost:: make_shared<i nt >();

evt. put (dunmyVari abl e, "do_not _transl ate");
}

Then none of the event data will get translated in any of the calib cycles.

Filtering from Python Modules

A Python module can use standard psana features to skip events as discussed above. It can also add any Python object into the event store that has the

key "do_not_translate".

Below is a complete example. First we make a release environment, and create a package for our Python Module that will filter events.

Suppose we want to filter based on the photon count of the calibrated cspad from the CxiDs1.0:Cspad.0 source in the tutorial data. Rather then work with
the quad's of the cspad, we will use an image producer module so that we can work with a 2D image. Further documentation on the various calibration
modules, including image producers, can be found at psana - Module Catalog. We now add the following two files:

myrel/trans.cfg

[psana]

nmodul es = cspad_nod. CsPadCal i b \
CSPadPi xCoor ds. CSPadl nagePr oducer \
mypkg. nynmod \
Transl at or. H5Qut put

events = 10

files = exp=cxitutl3:run=1150

[CSPadPi xCoor ds. CSPadl magePr oducer]

source = Det | nf o(Cxi Ds1. 0: Cspad. 0)
key = calibrated
i mkey = i mage

[Transl at or. H5Qut put]

deflate=-1

shuf f | e=Fal se

overwite=True

out put _file=cxitut13-runll150-filt.h5

and the file

myrel/mypkg/src/mymod.py
i nport psana

cl ass nynod(object):
def __init__(self):
sel f.threshold = self.configlnt('threshold'
sel f.source = self.configSrc('source', "' Detl

def event(self, evt, env):
i mge = evt.get(psana.ndarray_int16_2,
sel f.source,
"image')
if image is None: return
phot onCount = inmage[:].sum()
i f photonCount < self.threshold:
sel f. skip()

After putting these files in place, and doing

scons

, 176000000)
nf o(Cxi Ds1. 0: Cspad. 0) ')

https://confluence.slac.stanford.edu/display/PSDMInternal/psana+-+Module+Catalog

we can run this example by

psana -c trans.cfg

The configuration file trans.cfg sets up a module chain with 4 modules: cspad_mod.CsPadCalib, CSPadPixCoords.CSPadlmageProducer, mypkg.mymod,
Translator.H5O0utput. The first module calibrates all cspad it finds. The second module turns a cspad from a specific source into an image - placing quads
and ascics in the correct position based on geometry. After these two modules, we load our own module - mypkg.mymod. Finally the Translator module
runs last.

Reading through trans.cfg you will see how the raw cspad moves through the event store. The default behavior of cspad_mod.CsPadCalib is to place
calibrated cspad in the Event with the key "calibrated". The CSPadPixCoords.CSPadlmageProducer module has been told to look for the “calibrated" input
key, for the source DetInfo(CxiDs1.0:Cspad.0) and produce an image with the key "image".

In mymod.py, we see a class called mymod derived from object. It is important that the class name be the same as the file name. This is part of how psana
finds the class. In the event, the module gets data of type psana.ndarray_int16_2. Identifying the correct type to use can be a challenge. Starting with code
in event() that does

print evt.keys()

shows what the keys look like. After getting a valid image, a sum and simple threshold is performed.

Note the option

events = 10

in the psana section of the config file. This means one would translate 10 events in the data. This is just for testing and development. One would remove
the option, or set it to O for a full translation. With events=10, after translation, if one does

h5l's -r cxitutl1l3-runl1150-filt.h5 | grep -i "ndarray"
/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ ndarray_const _i nt 16_2/ Cxi Ds1. 0: Cspad. 0__i mage/ data Dataset {5/1nf}

one sees that only 5 events were translated. The other 5 were skipped.

Another point to make about this example is that the cspad is effectively getting translated twice. The Translator is going to see the event keys:
EventKey(type=psana.CsPad.DataV2, src='DetInfo(CxiDs1.0:Cspad.0)’)

EventKey(type=psana.CsPad.DataV2, src="DetInfo(CxiDs1.0:Cspad.0)', key="calibrated')

EventKey(type=psana.ndarray_int16_2, src='DetInfo(CxiDs1.0:Cspad.0)', key="image')

The Translator's default behavior is to treat the key 'calibrated’ as special. Since the first two keys differ only by the keystring 'calibrated’, the Translator
assumed the one marked ‘calibrated' should replace the first in the translation. Hence it will not translate the raw cspad. It only translated the calibrated
cspad. However the Translator does not know that the ndarray with key 'image’ is a copy of the cspad. If one is only going to work with the ‘image’ array
data and not the 'calibrated' cspad data, one could add the filtering option

Cspad=exclude

To the Translator.H50utput section of the config file. Then none of the cspad data will be translated (including both the configuration cspad object as well
as event data) while the 'image' arrays will still be translated.

Filtering Types
The psana.cfg file accepts a number of parameters that will filter out sets of psana types. For example setting

EBeam = excl ude

would cause any of the types Psana::Bld::BldDataEBeamV0, Psana::Bld::BldDataEBeamV1, Psana::Bld::BldDataEBeamV2, Psana::Bld::
BldDataEBeamV3 or Psana::Bld::BldDataEBeamV4 to be excluded from translation.

All types are translated by default. To exclude a few types, you can add lines like EBeam = exclude to the psana.cfg file. You can also list them with the
type_filter parameter:

type_filter exclude EBeam Andor

The type_filter parameter is useful for including a few types:

type_filter include CsPad Frane

A shortcut is available to turn off translation of all the Xtc data:

type_filter exclude psana

One would use this to only translate user module data, such as ndarrays, strings and newly registered types.

The complete list of type aliases that users can use to filter is found in the default_psana.cfg file included below.

Src Filtering

Specific src's can be filtered by providing a list such as

src_filter = exclude NoDetector.O0:Evr.2 xiDsl.0:Cspad.0 CxiSc2.0:Cspad2x2.1 EBeam FEEGasDetEnergy Cxi Dg2_Pi m

the syntax for a src in the filter list is what is supported by the Psana::Source class. This is a flexible syntax allowing for several ways to specify a src. It will
match any detector or device number if this is not specified. See the section Psana Configuration File and all Options below for more details. If DAQ src
aliases are present in the xtc file, these can be used for src filtering as well. For example if the alias

acq0l -> SxrEndstation.0:Acqiris.0

is present, one can do

src_filter = exclude acqO1

to exclude all data from the SxrEndstation.0:Acqiris.0 src.

Type/Src (EventKey) filtering

Sometimes the type and src filtering do not offer enough control over what to filter. One can also (as of ana-0.15.1) filter based on individual event keys -
that is specify a type and a src together (and optionally a key string, but this is usually not necessary). For example, suppose when doing EventKeys on a
run in your experiment, one has the following pieces of data in the event:

Event Key(t ype=Psana: : Caner a: : FraneV1l, src=Detl| nfo(XppSb4Pi m 1: Tn6740. 1), alias="yag3")

Event Key(type=Psana: : Package: : Proj V1, src=Det| nfo(XppSb4Pi m 1: Tn6740. 1), alias="yag3")

Event Key(t ype=Psana: : Caner a: : FrameV1l, src=Det| nfo(XppEndstation. 0: Opal 1000.0), alias="opal _0")

Event Key(t ype=Psana: : Caner a: : FraneV1l, src=Detl| nfo(XrayTransportD agnostic.0: Opal 1000.0), alias="xtcav")

and one doesn't want to translate the Camera::FrameV1 from yag3, but one does want to translate Package::ProjV1. Perhaps ProjV1 is a projection of the
large detector, and this is all that is necessary for analysis. One also wants to translate the Camera::FrameV1's from the other two sources. This could be
achieved by setting

eventkey_filter = exclude Frane__yag3

That is, one can combine one of the Type Aliases from the type filter with a src, using a double underscore, __, to separate the two. One can make the
exclude list as long as one likes (or make it an include list). The Translator will fatally stop if a type alias or src is not understood, or if the ___is not found.

Writing User Data

The translator will write NDarrays, C++ std::strings, and C++ types that the user registers. Presently, registering new types is an advanced feature that
requires familiarity with hdf5 programming. To add data to the translation, one must write a Psana module that adds this data into the event or configStore
before the Translator.H5Output module runs.

Event vs. ConfigStore, EndData subgroups

Most user modules will add data to the event. Such data will be written into stacked datasets, that is a 1D dataset of a type X based on the user data. In
this 1D dataset, there will be one entry for each event the user module added data. Alongside this data, in a dataset named "data" will be a dataset named
"time". The "time" dataset will have the event id's corresponding to the Psana Events the from which the user module added data.

Data added to the configStore is not written out in "stacked" datasets. It is written out in "one shot". The intention is that users may add some configuration
during beginrun or begincalibcycle as well as some summary information during endcalibcycle or endrun. It is not recommended that users add data to the
configStore for the purpose of translation during regular events. During all three of endcalibcycle, endrun and endjob, the Translator will check for new data
in the configStore(). If it finds it, it will create a subgroup called EndData in the appropriate place. For example

/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ EndDat a # triggered by new data in the configStore() found
during endcal i bcycle

/ Conf i gur e: 0000/ Run: 0000/ EndDat a # triggered by new data in the configStore() found
during endrun

/ Confi gur e: 0000/ EndDat a # triggered by new data in the configStore() found

during endjob

In this way, when a user Psana module processes endcalibcycle or endrun, it can add summary data to the configStore that will be picked up by the
Translator. Psana modules could also add configuration information during beginrun or beginjob.

One limitation users may run into is overwriting keys - Psana does not allow Python modules to replace ndarrays in the configStore as C++ modules may

be relying on the data to be unchanging. So for example, if a user module is going to create new summary information for each endcalibcycle, they must
use different keys.

NDArrays and Strings

ndarrays (up to dimension 4 of the standard integral types, floats and doubles) as well as std::string's that are written into the event store will be written to
the hdf5 by default. ndarrays can be passed to the Translator by Python modules as well as C++ modules. The schema for translating is to join the source
and keystring with double underscore. For instance, given a psana user module that looks like this

i mport nunpy as np
i mport psana

def MyMobdul e(obj ect):
def __init__(self):
sel f.src = psana. Source("Det | nf o(XppEndst ati on. 0: Opal 1000. 0) ")

def event(self, evt, env):
a = np.zeros(3)
evt. put (a, "nmykeyA")
evt.put("ny string", "nykeyB")
evt. put(a,self.src, "nykeyA")
evt.put("my string", self.src, "nykeyB")

One would get these new groups in the HDF5 file:

/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ ndarray_f| oat 64_1/ noSrc__nykeyA/ dat a

/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ ndarray_f| oat 64_1/ noSrc__nykeyA/ tine

/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ ndarray_f | oat 64_1/ XppEndst ati on. 0: Opal 1000. 0__nykeyA/ dat a
/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ ndarray_f | oat 64_1/ XppEndst ati on. 0: Opal 1000. O__nykeyA/ ti me
/ Conf i gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ st d: : string/ noSrc__nykeyB/ data

/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ std: : string/ noSrc__nykeyB/tinme

/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ st d: : string/ XppEndst ati on. 0: Opal 1000. 0__nykeyB/ dat a

/ Confi gur e: 0000/ Run: 0000/ Cal i bCycl e: 0000/ st d: : stri ng/ XppEndst ati on. 0: Opal 1000. 0__nykeyB/ ti nme

Note that data put in the event store without a src specified go under a group that starts with "noSrc". All data gets a "stacked" dataset named data, and a
time dataset.

Note, the type group name for ndarrays is fully qualified by the template arguments, some examples of type names are

ndarray_int8_1 # a one dinensional array of 8 bit signed integers (the C type char)
ndarray_uint8_2 # a two dinmensional array of 8 bit unsigned integers

ndarray_int32_1 # a one dinmensional array of 32 bit signed integers (the C type int)
ndarray_uint64_3 # a 3D array of 64 bit unsigned integers

ndarray_fl oat32_2 # a 2D array of 32 bit floats (the Ctype float)

ndarray_float64_1 # a 3D array of 64 bit floats (the C type double)

These names agree with what users find in the Python interface to psana.

Less common are the names used to store an ndarray of const data. An example name for such data is

ndarray_const _fl oat32_2

Fixed Dimensions vs. Variable Dimensions

The Translator defaults to using a fixed set of dimensions for all the ndarrays that go into the same dataset. The array received for the first data of the
dataset determine these dimensions. For example, if from python one did

event . put (nunpy. zeros((3, 4), "nykey")

during the first event, but then

event . put (nunpy. zeros((5, 4), "nykey")

during the second event, the Translator would throw an error. One option is to start a new dataset during the second event with a different key:
event . put (nunpy. zeros((5, 4), "nykey_l arger")

The Translator supports variable length arrays in the same dataset, as long as the variation is only in the slow dimension. To use this option, one informs
the Translator to set up a dataset of variable length arrays by pre-pending 'translate_vlen:' to the start of the keys. For example:

event . put (nunpy. zeros((3, 4),"transl ate_vl en: nykey") # event one
event . put (nunpy. zeros((5, 4), "transl ate_vl en: nykey") # event two

Now both ndarrays go to the same dataset, and the underlying hdf5 type changes to a vien type of 1D arrays with dimension 4. The type name in the hdf5
path changes to indicate vlen, it will be

/' ndarray_fl oat32_2_vl en/ noSrc__nykey

as opposed to

/' ndarray_f | oat 32_2/ noSrc__nykey

in the case of fixed length datasets.

Psana Configuration File and all Options

When running the translator as a psana module, if is often convenient to create a psana.cfg file. The Translator package include the file default_psana.cfg
which is a psana configuration file that describes all the options possible, with extensive documentation as to what they mean. Below we include this file
for reference. To use this file, one could it and modify it. However it is not necessary to take the whole file - every value set is set to the default value. One
could simply use this as a reference for those options values that one wants to change.

psana-translate default_psana.cfg file - all options

SR T R R R R R R

[psana]

MODULES: any nodul es that produce data to be transl ated need be | oaded

BEFORE Transl ator.H5Qut put (such as calibrated data or ndarray's)

event data added by nodules listed after Translator.H5Qutput is not translated.
nodul es = Transl at or. H5Qut put

files = **TODO. SPECI FY | NPUT FI LES OR DATA SOURCE HERE**

HHH R R R R R R R R R

[Transl at or. H5Qut put]

The only option you need to set for the Transl ator.H5Qut put nodule is

output _file. Al other options have default val ues (explai ned bel ow).

TODO enter the full h5 output file nane, including the output directory
output _file = output_directory/h5output.h5

By default, the Translator will not overwite the h5 file if it already exists
overwite = fal se

HHBHBEHAE B EHBEHEHH

EPI CS FI LTERI NG

The Translator can store epics pv's in one of three ways, or not at all.

set store_epics below, to one of the follow ng:

updat es_only stores an EPICS pv when it has been updated in the psana epics store.
For xtc input this happens whenever EPICS data is present in a datagram
Note - many EPICS pvs are not present in every shot. A dataset
for an EPIC pv is often shorter than the total nunber of events.
Experiments with many short calib cycles may have sonme calib cycles where
no EPICS pv's show up. Users woul d then have to | ook back through several
calib cycle's to find the latest value of a pv.

cal i b_repeat This is the same as updates_only except that each calib cycle starts with
the nost recent value of each pv. This nakes it easier to find pv's in a
calib cycle. For experinments with many short calib cycles, it can produce
nore datasets than neccessary.

al ways For each event, store the npbst recent value of the EPICs pv. Produces
| onger datasets than neccessary, but makes it easier to find the |atest
pv for an event.

no epics pv's will not be stored. You may al so want to set Epics=exclude
(see below) if you do not want the epics configuration data stored

The default is 'calib_repeat’

store_epics = calib_repeat

HHEBHEHEHAA R AR R AHEHAEHRR

FILTERI NG

#

By default, all xtc data is Translated and many ndarrays that user nodules (if any)

add are translated. The Translator can be configured to filter data based on

a nunber of criteria. There are five options for filtering data:

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

type filtering - for exanple, exclude all cspad, regardl ess of the detector source
source filtering - for exanple, exclude any data froma given detector source

key filtering - for exanple, include only ndarrays with a given key string

calibration - do not translate original xtc if a calibrated version is found

eventkey filtering -very fine control over filtering - specify type,src and key

Type filtering is based on sets of Psana data types. If you know what detectors or
devices to filter, leave type filtering alone and go to src_filter.

Type filtering has the highest precedence, then key filtering, then source

filtering, then "full" event key filtering, and lastly calibration filtering. Wen the

Transl ator sees new data, it first checks the type filter. If it is a filtered type

(or unknown type) no further translation occurs with the data - regardless of src or key.

For data that gets past the type filter, the Translator |ooks at the src and key. The src
filter is only applied to data that has an enpty key string. To filter data with key strings,
use the key filter, or full eventkey filter (if fine control is needed). Data with the special
calibration key string are handled via the calibration filtering.

N EEEEEEEEEEEEEEEEEEEEEEEEEEEE NN
TYPE FI LTERI NG

One can include or exclude a class of Psana types with the follow ng
options. Only the strings include or exclude are valid for these
type filtering options.

Note - Epics in the list belowrefers only to the epicsConfig data
which is the epics alias list, not the epics pv's. To filter the epics pv's
see the 'store_epics' option above.

HOH OH R HH R HHHHHHH R HEHHH R

AcqTdc = incl ude # Psana:: Acqiris:: TdcConfigVl, Psana::Acqiris:: TdcDataVvl

AcqWavef orm = i ncl ude # Psana::Acqiris::ConfigVl, Psana::Acqiris::DataDescVl

Alias = include # Psana:: Alias:: ConfigVl

Anal ogl nput = include # Psana:: Bl d: : Bl dDat aAnal ogl nput V1

Andor = incl ude # Psana:: Andor:: ConfigVl, Psana::Andor:: FraneVl

Andor 3d = i ncl ude # Psana: : Andor 3d: : Confi gVl, Psana:: Andor 3d:: FraneVl

Arraychar = include # Psana:: Arraychar:: DataVl

Control = include # Psana:: Control Data: : Confi gVl, Psana::Control Data:: ConfigV2, Psana::

Cont rol Dat a: : Confi gV3

Cspad = include # Psana:: CsPad:: ConfigVl, Psana::CsPad:: ConfigV2, Psana::CsPad:: ConfigV3, Psana::
CsPad: : Confi gv4, Psana::CsPad:: ConfigV5, Psana::CsPad::DataVl, Psana::CsPad:: Dat aVv2

Cspad2x2 = include # Psana:: CsPad2x2:: ConfigVl, Psana::CsPad2x2::ConfigV2, Psana::CsPad2x2::

El enent V1

Di odeFex = include # Psana: : Lusi:: D odeFexConfigVl, Psana:: Lusi::Di odeFexConfigV2, Psana::Lusi::
Di odeFexV1

EBeam = i ncl ude # Psana:: Bl d: : Bl dDat aEBeanV0, Psana:: Bl d:: Bl dDat aEBeanVl, Psana:: Bl d::

Bl dDat aEBean¥V2, Psana:: Bl d: : Bl dDat aEBean¥V3, Psana:: Bl d: : Bl dDat aEBeanV4, Psana:: Bl d: : Bl dDat aEBean¥5, Psana:: Bl d: :
Bl dDat aEBeanVv6, Psana: : Bl d: : Bl dDat aEBeanV7

Encoder = incl ude # Psana:: Encoder:: ConfigVl, Psana::Encoder:: ConfigV2, Psana::Encoder:: DataVl,
Psana: : Encoder: : Dat av2

Epi cs = include # Psana: : Epi cs:: ConfigVl

Epi x = include # Psana: : Epi x: : Confi gVl, Psana:: Epix:: El enmentV1, Psana::Epix::El enmentV2, Psana::

Epi x: : El emrent V3
Epi x100a = i ncl ude
Epi x10k = incl ude

Psana: : Epi x: : Confi g1l00aV1l, Psana:: Epi x: : Confi g100aVv2

Psana: : Epi x: : Confi g10KV1

Epi xSanpl er = include Psana: : Epi xSanpl er:: Confi gVl, Psana::Epi xSanpl er:: El enent V1

Evr = include Psana: : EvrDat a: : Confi gV1l, Psana::EvrData:: ConfigV2, Psana::EvrData:: ConfigVs,
Psana: : Evr Dat a: : Confi gV4, Psana::EvrData:: ConfigV5, Psana::EvrData::ConfigV6, Psana::EvrData:: ConfigV7, Psana::
Evr Dat a: : Dat aV3, Psana:: Evr Dat a: : Dat av4

H H B R

Evrl O = incl ude # Psana:: EvrData:: | OConfigVl, Psana::EvrData::|QOConfigV2

Evs = include # Psana:: EvrData:: SrcConfigVl

FEEGasDet Energy = i ncl ude # Psana:: Bl d: : Bl dDat aFEEGasDet Ener gy, Psana:: Bl d: : Bl dDat aFEEGasDet Ener gyV1
Fccd = include # Psana: : FCCD: : FccdConfi gVl, Psana:: FCCD: : FccdConfi gV2

Fl'i = include # Psana:: Fli::ConfigVl, Psana::Fli::FrameVli

Franme = include # Psana:: Canera:: FranmeVl

FraneFccd = incl ude # Psana:: Canera: : FrameFccdConfi gVl

FraneFex = include # Psana: : Caner a: : FrameFexConfi gVv1

GWD = include # Psana: : Bl d: : Bl dDat aGVDV0O, Psana:: Bl d: : Bl dDat aGVDV1, Psana:: Bl d: : Bl dDat aGvDV2
GenericPgp = include # Psana:: Generi cPgp:: ConfigVl

Gscl6ai = include # Psana:: Gscl6ai:: ConfigVl, Psana::Gscl6ai:: DataVl

Inp = include # Psana::|np::ConfigVl, Psana::I|np::ElenentVi

I pimb = include # Psana:: | pinb::ConfigVl, Psana::|pinb::ConfigV2, Psana::|pinb::DataVl, Psana::
| pi nb: : Dat aV2

| pnFex = include # Psana:: Lusi:: | pnFexConfigVl, Psana::Lusi::|pnFexConfigV2, Psana::Lusi::|pnFexVl
L3T = include # Psana::L3T::ConfigVl, Psana::L3T::DataVl, Psana::L3T::DataV2

CceanOptics = include # Psana:: CceanOpti cs:: ConfigVl, Psana::CceanOptics:: ConfigV2, Psana::

CceanOptics: : DataVl, Psana::CceanOptics:: DataV2, Psana::CceanOptics:: DataV3
Opal 1k = include # Psana:: Opal 1k:: Confi gVl

O ca = include # Psana:: Orca:: ConfigVl

Partition = include # Psana::Partition:: ConfigVl

PhaseCavity = include # Psana:: Bl d: : Bl dDat aPhaseCavity

Pi ml mage = include # Psana: : Lusi:: Pi m nmageConfi gVl

Pi max = incl ude # Psana:: Pi nax:: Confi gVl, Psana::Pinax:: FranmeVl

Princeton = include # Psana:: Princeton:: ConfigVl, Psana::Princeton::ConfigV2, Psana::Princeton::
ConfigV3, Psana::Princeton::ConfigV4, Psana::Princeton::ConfigV5, Psana::Princeton::FranmeVl, Psana::Princeton::
FraneVv2

Princetonlnfo = include # Psana:: Princeton::InfoVl

Quartz = include # Psana::Quartz:: ConfigVl, Psana::Quartz:: ConfigV2

Rayoni x = incl ude # Psana:: Rayoni x: : Confi gVl, Psana:: Rayoni x:: ConfigV2

Shar edAcgADC = i ncl ude # Psana: : Bl d: : Bl dDat aAcqADCV1

Shar edl pi nb = i ncl ude # Psana:: Bl d:: Bl dDat al pi nbV0, Psana:: Bl d: : Bl dDat al pi nbV1

Shar edPi m = i ncl ude # Psana:: Bl d:: Bl dDat aPi nV1

Spectroneter = include # Psana:: Bl d:: Bl dDat aSpect ronet er VO, Psana:: Bl d: : Bl dDat aSpect ronet er V1

TM6740 = include # Psana: : Pul ni x: : TM6740Confi gVv1, Psana:: Pul ni x:: TM6740Confi gVv2

Ti meTool = include # Psana:: Ti neTool : : ConfigVl, Psana::TineTool:: ConfigV2, Psana::TinmeTool:: DataVi,
Psana: : Ti neTool : : Dat av2

Ti mepi x = include # Psana:: Ti nepi x: : ConfigVl, Psana::Tinepix::ConfigV2, Psana::Tinepix::ConfigV3,
Psana: : Ti mepi x: : DataVvl, Psana:: Ti nepi x: : Dat av2

TwoDGaussi an = i ncl ude # Psana: : Caner a: : TwoDGaussi anV1

UsdUsb = incl ude # Psana:: UsdUsb: : ConfigVl, Psana::UsdUsb:: DataVl

pnCCD = i ncl ude # Psana: : PNCCD: : Confi gVl, Psana:: PNCCD: : Confi gV2, Psana::PNCCD: : FramesV1

user types to translate fromthe event store

ndarray_types = include # ndarray<int8_t, 1> ndarray<int8_t,2> ndarray<int8_t,3> ndarray<int8_t, 4>,

ndarray<int16_t, 1> ndarray<intl16_t, 2> ndarray<int16_t, 3> ndarray<intl1l6_t,4> ndarray<int32_t, 1>,
ndarray<int32_t, 2> ndarray<int32_t, 3> ndarray<int32_t,4> ndarray<int64_t,1> ndarray<int64_t, 2>,
ndarray<int64_t, 3> ndarray<int64_t, 4> ndarray<uint8_t,1> ndarray<uint8_t,2> ndarray<uint8_t, 3>,

ndarray<ui nt8_t, 4>, ndarray<uint16_t,1> ndarray<uintl6_t, 2>, ndarray<uintl6_t,3> ndarray<uintl16_t, 4>,
ndarray<ui nt 32_t, 1>, ndarray<ui nt32_t, 2>, ndarray<uint32_t, 3>, ndarray<uint32_t, 4> ndarray<uint64_t, 1>,

ndar ray<ui nt 64_t, 2>, ndarray<ui nt64_t, 3>, ndarray<uint64_t, 4>, ndarray<float, 1> ndarray<float, 2>,

ndarray<fl oat, 3>, ndarray<fl oat, 4> ndarray<doubl e, 1>, ndarray<doubl e, 2>, ndarray<doubl e, 3>, ndarray<doubl e, 4>,
ndarray<const int8_t,1> ndarray<const int8_t,2> ndarray<const int8_t,3> ndarray<const int8_t, 4>,
ndarray<const intl16_t, 1> ndarray<const intl16_t,2> ndarray<const intl1l6_t,3>, ndarray<const intl16_t, 4>,
ndarray<const int32_t, 1> ndarray<const int32_t,2> ndarray<const int32_t, 3> ndarray<const int32_t, 4>,
ndarray<const int64_t, 1> ndarray<const int64_t,2> ndarray<const int64_t,3>, ndarray<const int64_t, 4>,
ndarray<const uint8_t, 1> ndarray<const uint8_t,2> ndarray<const uint8_t, 3> ndarray<const uint8_t, 4>,
ndarray<const uint16_t, 1>, ndarray<const uintl16_t,2> ndarray<const uintl1l6_t,3> ndarray<const uint16_t, 4>,
ndarray<const uint32_t, 1> ndarray<const uint32_t, 2> ndarray<const uint32_t,3> ndarray<const uint32_t, 4>,
ndarray<const uint64_t,1> ndarray<const uint64_t,2> ndarray<const uint64_t,3> ndarray<const uint64_t, 4>,
ndarray<const float, 1> ndarray<const float, 2> ndarray<const float, 3> ndarray<const float, 4> ndarray<const
doubl e, 1>, ndarray<const doubl e, 2>, ndarray<const doubl e, 3>, ndarray<const doubl e, 4>

std_string = include # std::string

HHHABRBHBE R BB R BERHREH

TYPE FI LTER SHORTCUT

In addition to filtering Psana types by the options above, one can use
the type_filter option below For exanple:

type_filter = include cspad # will only translate cspad types. WII not translate
ndarrays or strings
type_filter = exclude Andor evr # translate all except the Andor or Evr types
If you do not want to translate what is in the xtc file, use the psana shortcut:
type_filter = exclude psana # This will only translate ndarray's and strings
Li kewi se doi ng:
type_filter = include psana # wll translate all xtc data, but skip any ndarray's or strings

The default is to include all

ype_filter = include all
note - if type_filter is anything other than "include all' it takes precedence
over the classes of type filter options above, |ike Cspad=i ncl ude.

G R EEEEEEEREEEREEENNNEN:
SOURCE FI LTERI NG

The default for the src_filter optionis "include all"
If you want to include a subset of the sources, do

HHHFHBFHEHHF O H R EHHH R

src_filter include srcnanel srcnane2
or if you want to exclude a subset of sources, do
src_filter exclude srcnanel srcnane2

The syntax for specifying a srcnane follows that of the Psana Source (discussed in

the Psana Users Cuide). The Psana Source recogni zes DAQ alias nanes (if present

inthe xtc files), several styles for specifying a Pds Src, as well as detector natches
where the detector nunber, or device nunber is not known.

Unknown sources generate exceptions that by default stop the Translator. This can be
inconvenient for users that reuse one configuration across many runs in an experinent,
where some runs includes certain sources and some runs don't. You can tell the Translator
to ignore unknown sources by setting the option

unknown_sr c_ok=0 # to 1, by default it is False, which neans stop.
Specifically, format of the match string can be:

Det | nfo(det.detld: dev.devlid) - fully or partially specified Detlnfo
det.detld:dev.devlid - same as above

Det | nf o(det-detld|dev.devlid) - same as above

det-detld|dev.devlid - sanme as above

Bl dinfo(type) - fully or partially specified Bldlnfo

type - sanme as above

Proclnfo(ipAddr) - fully or partially specified Proclnfo

For exanpl e
Det | nf o(AnDETOF. 0. Acqiri s. 0)
Det | nf o(AnDETOF. 0. Acqiri s)
Det | nf o(AnDETOF: Acqiri s)
ATOETOF: Acqiri s
AMDETOF| Acqiri s

will all nmatch the sane data, AnmDETOF. 0. Acqiris.0. The later ones will nmatch
addi tional data (such as detector 1, 2, etc.) if it is present.

A sinple way to set up src filtering is to take a look at the sources in the
xtc input using the psana Event Keys nodule. For exanple

psana -n 5 -m Event Keys exp=cxi tut 13: run=22
W1l print the EventKeys in the first 5 events. |If the output includes

Event Key(t ype=Psana: : Evr Dat a: : Dat aV3, src=Det| nfo(NoDetector.0: Evr. 2))

Event Key(t ype=Psana: : CsPad: : Dat aV2, src=Det| nfo(Cxi Dsl1.0: Cspad. 0))

Event Key(t ype=Psana: : CsPad2x2: : El enent V1, src=Det | nfo(Cxi Sc2.0: Cspad2x2. 1))
Event Key(type=Psana: : Bl d: : Bl dDat aEBeanV3, src=Bl dl nf o(EBeamn))

Event Key(t ype=Psana: : Bl d: : Bl dDat aFEEGasDet Ener gy, src=Bl dl nf o(FEEGasDet Ener gy))
Event Key(type=Psana: : Caner a: : FrameVl, src=Bl dl nfo(Cxi Dg2_Pi m)

Then one can filter on these six srcnane's:
NoDet ector. 0: Evr.2 CxiDsl.0: Cspad.0 Cxi Sc2.0: Cspad2x2.1 EBeam FEEGasDet Energy Cxi Dg2_Pi m

rc_filter = include all
HHBHBH BB HRH
CALI BRATI ON FI LTERI NG

Psana cali bration nodul es can produce calibrated versions of different
data types. Depending on the nodul e used, you nmay get an NDArray, an
image, or the sane data type as was in the xtc but with calibrated data.

If you are doing the latter, the nodule output will be data of the same type
and src as the uncalibrated data, with an additional key, such as 'calibrated .
If these nbdules are configured to use a different key, set calibration_key

bel ow accordi ngly:

calibration_key = calibrated

The Translator defaults to witing calibrated data in place of uncalibrated

data. If you do not want the calibrated data and would prefer to have the

HFHHFHBPHEFHFBHFHOOOEHF R EHHREHHEHHHEHHHEHHEHHHHHRHHR R

original uncalibrated data fromthe xtc, then set skip_calibrated to true.
skip_calibrated = fal se

note, setting skip_calibrated to true will force sets exclude_calibstore
(below) to be true as well.
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEN:
CALI BSTORE FI LTERI NG

H

Cal i bration nodul es may publish the data they used to produce the calibrated
event objects. Exanples of data woul d be pedestal values, pixel status (what

pi xel s are hot) and conmon node al gorithm paraneters. This data will be published
in what is called the Psana calibStore. Wen the Transl ator sees calibrated

event data, it will look for the corresponsinding calibStore data as well.

If you do not want it to translate calibStore data, set the following to true.
exclude_cal i bstore = fal se

otherwi se, the Translator will create a group CalibStore that holds the
calibstore data. Note, the Translator |ooks for all calibStore data associ ated
with the calibration nodules. If a calibration nodule was configured to not do

HoH OHH R HH R HH

certain calibrations (such as gain) but the nodule still put gain val ues
in the config store (even though it did not use then) the Translator
woul d still translate those gain val ues.

AR EEEEEEEEEEEEEEEEEEEEEEEEEEENENEERES
KEY FI LTERI NG

Psana nodul es | oaded before the translator may put a variety of objects in the event

store. Be default, the Translator will translate any new data that it knows about.

In addition to the psana types, it knows about NDArrays, C++ strings, and has a C++ interface
for registering new sinple types. NDarray's up to 4 dinmensions of 10 basic types

(8, 16, 32 and 64 bit signed and unsigned int, float and double) as well as the const
versions of these types are translated.

General ly Psana nodules will attach keys to these objects (the keys are sinply strings).
To filter the set of keys that are translated, nodify the paraneter bel ow

ey _filter = include all

The default is to not look at the key but rather translate all data that the translator
knows about. An exanple of including only data with the key final answer woul d be

key_filter = include final answer
To exclude a few keys, one can do
key_filter = exclude arrayA arrayB

Note, key filtering does not affect translation of data w thout keys. For instance
setting key filter = include keyA does not turn off translation of data w thout keys.
O all the data with keys, only those where the key is keyA will be translated.

R EEEEEEEEEEEEEEEEEEEEEEEEEEEEENENENERS::
EVENTKEY FI LTERI NG

One can also filter data based on the event key. The default is
eventkey filter = include all

but one could do

eventkey_filter = exclude Frane__xtcav Frane__yag3

that is, one can provide a list of event keys, which are (type, src, keystring) triplets, and
the final key string is optional. The three items, type, src, keystring, nust be separated by
doubl e underscores, i.e: __

#HBHBHBH BB HH

EXCLUDE CONFI GURE EVENT DATA

this option was put in place to address a problemwith a fewruns in a particul ar
experinment. Generally you do not need to turn this on. The explanation is as foll ows.
Usual Iy regul ar event data does not appear during the configure transition. The
exception is Bld data. Each bld type will get an entry during the configure - nore as
a signal that the data is present - the values are not reliable. For this experinent,
the Bl dDat aSpectroneterV1l during the Configure transition had a junk nunber of peaks
that caused psana to crash. To address this, one can set the follow ng:

excl ude_config_eventdata = fal se

HHHFHRBFHRARFRFHERFHFFEHRAFAFRFEFRAFARFRFEFRRARFAFEHRFRFRFERFAFRFEFRFRSFF RS R

H*

to true

H*

SPLIT | NTO SEPARTE HDF5 FI LES BASED ON CALI B CYCLES

There are two reasons to split the Translator output into separate files based on

calib cycles. The first is to reduce the size of the hdf5 files, and the second is

to speedup translation by translating separate calib cycles in parallel. The default

is to not split:

plit = NoSplit

however the Translator also supports SplitScan node. This can only be invoked by running
the separate driver program

h5-npi -transl ate

which requires MPI to be available in the environnment. Under the hood, it will use the two other
values for the split paraneter - MPIWrker and MPI Master - but users should not set these directly.

In SplitScan node, in addition to the output File, separate files will be nade for the calib cycles.
The output file (the master file) will include external links to the other files. Several npi jobs are
run sinultaneously to divide the work of creating the calib cycle files. For exanple, running six jobs
to produce out.h5 might |ook Iike:

npirun -n 6 h5-npi-translate -m Transl ator. H5Qut put -0 Transl ator. H5CQut put . out put _fil e=out. h5 exp=xppd9714:
un=16

The driver program h5-npi-translate, takes all argunments that psana takes.

If six jobs were used, one beconmes the master process and the other five are the workers.
The naster process does two things. First it wites the file out.h5 with the external |inks
to the calib files. Second it reads through all the data and finds the calib cycles. Wen it
finds a calib cycle, it tells the next available worker where this is. Wen a worker is done,
it tells the master process. The naster process than adds all neccessary external links from
out.h5 to the translated calib file produced by the worker.

Generally, there will be one calib cycle file for each calib cycle. However to prevent to nany
calib cycle files from being produced for experinments that have only a few events per calib cycle,
an option controls the m numum nunber of events per external calib cycle file. The default is

m n_events_per_calib_file = 100

For exanple, if there are only 10 events per calib cycle, and assum ng the naster file is called
out.h5, the file output_cc0000.h5 will contain the groups

/ Cal i bCycl e: 0000
/ Cal i bCycl e: 0001

/ Cal i bCycl e: 0009
and the file output_cc0010.h5 will start with group /CalibCycle: 0010

As nmentioned above, when workers finish a calib cycle file, they send a nessage to the master.

How frequently the master stops reading through the data to check for these nmessages is controlled
by the follow ng paraneter

num events_check_done_calib_file = 120

that is, it defaults to check for a 'done' nessage froma worker every 120 events.

by default, the calib cycle files are witten to the sane directory as the master file. Optionally,
they can be placed into a subdirectory based on the naster filenane. The subdirectory nane is the
master file basenane, w thout the extension, with _ccfiles appended to it. This subdirectory will be
created if need be. To do this, set

split_cc_in_subdir = True
then if one does sonething Iike

output _file = mydir/xpptut13-r0179. h5
split_cc_in_subdir = True

one will get
nmydi r/ xppt ut 13-r 0179. h5

nmydi r/ xppt ut 13-r0179_ccfil es/ xppt ut 13-r0179_cc0000. h5
nmydi r/ xppt ut 13-r0179_ccfil es/ xppt ut 13-r0179_cc0001. h5

HHEHFFHFIFHFFHRHFHFRFFEHFHFFEFHFFRFERFFRFRFFHFRFRFERFFFRFRHFHRFFEHFRFRFEFFRFRFERHFRBEFEHRFR SRRSO R H R

rather than

mydir/xpptut13-r0179. h5

nydi r/ xppt ut 13-r0179_cc0000. h5

mydi r/ xpptut 13-r0179_cc0001. h5

#it

When running the h5-npi-translate and specifying user psana nodul es (perhaps to add ndarrays
into the translation or dynamically filter events) it is inportant to note that these nodul es
are restarted for each calib cycle file. That is these nodules will have their begi nJob/endJob
and begi nRun/ endRun routines called for each calib file that a worker produces.

#

#it## FAST | NDEX ####

For online analysis with |ive data, one of the inpedinents to keeping up with the data is the tine
it takes h5-npi-translate's to read through the data to find the calib cycles. As long as users
read the small data (adding :snd to the dataset specification) h5-npi-translate should have no
troubl e indexing the calib cycles in real tine.

If for some reason there is a problemwith the small data, users can fall back on the
fast _index feature against the large xtc files, however be aware that the web portal
adds :snd to the datasource, so you will have to coordinate with data managenent to
switch to the large xtc. Bel ow we docunent fast_index.

fast _i ndex takes advantage of the unique signature of each

new calib cycle, conbined with the regular structure of the separate xtc data files in order to
limt the reading to just one of the file. In this way, the h5-npi-translate master rank

need only get through the data it reads/searches at 20hz to keep up with the data. Part of why
it is deprecated is because it is not guaranteed to work, whereas small data will.

The transl ator supports the following options to turn on fast indexing and controlling how much
tine is spent searching the other files

HoHOHHHHHHHEHHHHHHHH R

fast _i ndex_f orce=0 # set to 1 to turn fast indexing on

fi_nb_hal f_bl ock=12 # when fast indexing is on, use 12MB on each side, or 24MB for each bl ock that
is searched
fi _num bl ocks=50 # this it half the nunber of 'other' blocks to try. The translator will try 1 +

2*50 = 101 blocks if this is 50

Sorme details, If the Translator finds a calib cycle at offset Nin DAQ stream O, then the Transl ator
will by default look in a 24MB bl ock around offset Nin stream1, i.e., N-+ 12MB. It is looking for a
mat ch on about 52 bits, spread out anpbng 20 bytes. If the Translator fails to find the calib cycle in
those 24MB, then it tries the next 24MB bel ow, then the next 24MB above, then bel ow again, then above
again, etc. In the end, the Translator will cover 5 of these blocks, or 51*24MB=1.2CGB in stream 1.
After it finds the calib cycle in stream1, it repeats this process for stream2, 3,4 and 5.

If the Translator fails with any of these streans, it throws an exception.

Anot her option related to split scan is
first_calib_cycle_nunber

which is a 0-up counter for the first calib cycle that the MPIWorker will see. However users should not set
this option - it is set by the Translator.

N EEEEEEEEEEEEEEEEEEEEEEEEEEE N NN,
COVPRESSI ON

The follow ng options control conpression for nost all datasets.

Shuffling i mproves conpression for certain datasets. Valid values for

deflate (gzip conpression level) are 0-9. Setting deflate = -1 turns of f

conpr essi on.

shuffle = true

deflate = 1

#if deflate is set to -1, set shuffle to false, as it perfornms no function w thout conpression.
HHERHBEHAAB R R R HTEEBERREREHH

TECHNI CAL, ADVANCED CONFI GURATI ON

H o OH R HHHHHHHH R HHR

CHUNKI NG

The commented options bel ow give the default chunking options.

bj ects per chunk are selected fromthe target chunk size (16 MB) and

adj usted based on m n/nax objects per chunk, and the max bytes per chunk.

1t is inmportant that the chunkCache (created on a per dataset basis) be

| arge enough to hold at |east one chunk, ideally all chunks we need to have

open at one time when witing to the dataset (usually one, unless we repair

split events):

chunkSi zeTarget | nBytes = 1703936 (16MB)

chunkSi zeTarget Obj ects = 0 (0 neans sel ect objects per chunk from chunkSi zel nByt es)

maxChunkSi zel nByt es = 10649600 (100MB)

m nObj ect sPer Chunk = 50

maxObj ect sPer Chunk = 2048

chunkCacheSi zeTar get | nChunks = 3

maxChunkCacheSi zel nBytes = 10649600 (100MB)

By default, the Translator |ooks for control data to see if the nunber of events is known.
1f so, this overrides options above. To control chunking, one should al so set useControl Data
below to O (or False)

useControl Data = 1

#

-

REFI NED DATASET CONTROL

#

There are six classes of datasets for which individual options for shuffle,

deflate, chunkSi zeTarget|nBytes and chunkSi zeTar get Obj ects can be specified:

#

regular (nost everything, all psana types)

epics (all the epics pv's)

damage (acconpanies all regular data fromevent store)

ndarrays (new data from other nodul es)

string's (new data from ot her nodul es)

eventld (the time dataset that al so acconpanies all regular data, epics pvs, ndarrays and strings)
#

The options for regul ar datasets have been di scussed above. The other five datasets

get their default values for shuffle, deflate, chunkSizel nBytes and chunkSi zel nQbj ects

fromthe regul ar dataset options except in the cases bel ow

danageShuffle = fal se

stringShuffle fal se

epi csPvShuffle = fal se

stringDeflate = -1

event | dChunkSi zeTarget | nBytes = 16384

epi csPvChunkSi zeTarget | nBytes = 16384

The rest of the shuffle, deflate and chunk size options for the other five datasets are:

event | dShuffle = true

event | dDefl ate = 1
damageDefl ate = 1
epi csPvDeflate = 1
ndarrayShuffle = true

ndarrayDeflate = 1

event | dChunkSi zeTar get Obj ects = 0
damageChunkSi zeTarget | nBytes = 1703936
danageChunkSi zeTar get Obj ects = 0
stringChunkSi zeTar get | nBytes = 1703936
stri ngChunkSi zeTar get Obj ects = 0
ndar r ayChunkSi zeTarget | nBytes = 1703936
ndarr ayChunkSi zeTar get Obj ects = 0

epi csPvChunkSi zeTar get Obj ects = 0

HOHH HHHHHHHHHHHHEHHH R

o

SPLIT EVENTS

When the Translator encounters a split event, it checks a cache to see
#if it has already seen it. |If it has, it fills in any blanks that it can.
To prevent this cache fromgrow ng to |large, set the maxi num nunber of

split events to | ook back through here (default is 3000):

max_saved_split_events = 3000

Translation and Damage

psana has a specific damage policy that tells it what damaged data is acceptable for psana modules and what data is not. The default behavior is

® configStore - only undamaged data is stored in the configStore
® EventStore - undamaged data, and EBeam data with user damage is stored in the event, all other damage is not stored

the translator records event ids and damage for any xtc data that passes psana's damage policy. So by default, damaged config objects, and damaged
events (other then user damaged EBeam data) are not translated. This deviates slightly from what o2o-translate would translate. o2o-translate would also
store out of order damaged event data. There is a psana option that can be added to the [psana] section of the .cfg file to recover this behavior. Below we
document some special options that control what damaged data psana stores:

® store-out-of-order-damage - defaults to false, set to true if you want to translate out of order damaged data
® store-user-ebeam-damage - defaults to true, set to false if you do not want to translate EBeam data that only has user damage
® store-damaged-config - defaults to false, set to true if you want to store damaged config data

	Outdated: The XTC to HDF5 Translator

