
RPA and libXC Meeting Minutes
Ideas for RPA Crash

verify VBIOS settings same as nvidia (yes)
try without "setenv CUDA_DEVICE_WAITS_ON_EXCEPTION 1" (still fails)
run crash_test.c at keeneland ()fails there too
change bios settings as recommended by colfax (still fails)
swap C2075 with M2090 ()problem follows the M2090!
remove IB card (still fails)
try random matrix data instead of fixed data ()fails with random, works with fixed
run colfax memory test
reduce power consumption with "nvidia-smi --perf-limit=P4" (also tried P9). ().Fixes crashes, but still get corrupt data
try 1 gpu per node, to see if gpus are "fighting", or if cooling/power is a problem ()still fails
look for particular set of gpus that fail
switch to cudamemcpy in crash_test.c
make matrix bigger in crash_test.c
run crash_test.c on 1 gpu per node (still fails)
compare suncat-gpu-test (doesn't fail) and suncat-gpu (fails):

C2075 vs. M2090
7 vs. 8 gpus
IB card
cooling
power cables? (c13 vs. c19)

run nbody gpu test, as suggested by colfax (doesn't fail)
read gpu temps (read out via ipmi: code fails with temp around 69C (lower than C2075 where nvidia-smi reports 88C))
read rack temps (67-72 at inlet, 86-94 at outlet)
run crash_test.py with P9 (no failures)
run 32 gpu N-N with 3-gpus per node in exclusive mode (rack 1 still warm on the outputs: 88,88,92 (top to bottom on the front panel). Still saw
nan's in dbgcrash_fast/try19.
run with rack doors open, or change rack cooling behavior
check that PyArgParseTuple types match between python/C
cuda4
check power
small c version of crash_test.py
look at ipmi errors on gpu24/26: nothing
look in /var/log/messages for errors from driver
security scans
run gpu hardware tests (with colfax software?)
gcc instead of icc
small file crash (yes, crashed after 2 days)
keeneland (saw 1 nan failure and 1 kernel launch failure)
simple gemm test crash
does it crash on 1 node? (yes on suncat-gpu 4 cores (gpu20, and gpu26), but not on suncat-gpu-test)
mpi errors?
try magma GEMM (still crashes)
eliminate IB fork warning (still crashes)
race condition between cublasDestroy/cublasCreate? (no, happens after first create)
study with valgrind (dbgcrash_fast/try11,13,14 show some uninitialized data in mpisum)
study with cuda-memcheck (see dbgcrash_fast/try12) looks clean for the 32-node job, even when the data gets messed up (see many warnings
about python numerical overflows, indicating failure has occurred)
understand imprecise exceptions
run @nvidia with 8*M2090, Tyan motherboard, and cuda 5.0 ()works!
hardware problem (check for common node, too many jobs in the logfiles)
read the code: cudamemcpy memory overrun?
discontiguous numpy array? (put in asserts)
did get a memory error when running racecheck
no errors from cuda-memcheck heap check
read code to look for race conditions in cukernels.cu (even though problem existed before the addition of those kernels)
ran cuda-memcheck racecheck: only saw errors from cublas
check ecc enabled. looked with "nvidia-smi -q"
Ecc Mode
Current : Enabled
Pending : Enabled

To-Do List

Nvidia GTC questions

what intermittent errors does cuda-memcheck not detect?
hardware
cudamemcpy
others?

cuda-gdb generates output for kernel launches. slows down the code dramatically? becomes unusable.
set flag "set cuda kernel_events 0"

submit bug report if not solved
how does cuda deal with memory fragmentation?
nvvp error: "102 metrics have invalid values due to inconsistencies in the required event values"

trying to match up the counters in time, if not well-synchronized gives the above error. Larger pages.
handled differently by nsight (replays previous profiler)

double complex math: really fp64 instructions?
only double-precision

talk to Gernot Ziegler about instruction limited kernels?
is our zherk kernel latency limited?

multiple of 8 for k (8 rows at time in the loop)
may be limited by pieces at the beginning/end (end: scaling by alpha, beta, beginning: load the shared memory) loop over k in the middle
kepler: k up to 1000 for top performance

cufftplanmany memory leak
trigger crash on nan? how do nan's get produced?

not possible to trigger a crash on nan
why do they use bytes-per-instruction

get many errors from cublas with race check
if really errors: submit bug report

if we have 1 number used by many threads should it go into shared memory? constant memory?
we would think constant memory would be the right answer. shared memory would give a bank conflict.

what memory access errors can memcheck detect? cudamemcpy? array-out-of-bounds?
doesn't detect cudamemcpy errors (or any errors by the host) but does detect array-out-of-bounds accesses within the GPU

we were not 16-byte aligning cuDoubleComplex variables. error showed up "much later" in cuGetVector (error 11) and cudaDeviceSynchronize
(error 4). Did binary search to find source of error. How do we program error-checks so that run-time errors show up "immediately"?
cuda_safe_call?

pattern for error checking: issue different kernels in different streams, then do cudastreamsynchronize and cudagetlasterror
understand crash with rpa-gpu-expt running rpa_only_Na_cuda.py with nvprof

should file a bug report

3/12/2013

look profiling on RPA (lin)
ask about error handling at GTC (lin)
base.py get_phi_agp kernel
rpa manuscript (jun)
k-point parallelization (cpo)

3/5/2013

2 slides for Samuli
run profiling on RPA (lin)
memory leak (perhaps related to crashes)
adding error check functions
base.py get_phi_agp kernel
rpa (jun)

manuscript

2/26/2013

2 slides for Samuli
more structs for RPA (lin)
run nvvp on RPA (lin)
think about EXX
rpa (jun)

manuscript

2/19/2013

more structs for RPA (lin)
commit code
rpa (jun)

keep on eye on crashes
EXX on GPUs

fix MPI stuff in EXX
understand why it doesn't speed up
think about whether or not we tackle EXX yet

2/12/2013

structs for RPA
rpa (jun)

keep on eye on crashes
EXX on GPUs

2/5/2013

profile GPU-GPAW with maxed out memory on the GPU (lin)
gpu-gpaw profiling thoughts:

cpo thinks improving mpi performance may be difficult
lin thinks improving mpi performance may be important, since number of k-points decreases in future.
maybe we could pipeline other work while mpi is running?
why do we only get a x5 speedup for Pt 3x3x4? (samuli sees 8 to 11)

see if the mask stuff is called every SCF step (aj)
think about randomization idea (aj)
evaluate effectiveness of tzp+PK on na2o4/pt (aj)
freeze D_aps?
rpa (jun)

keep on eye on crashes
rewrite code for the ZHERK

1/29/2013

profile GPU-GPAW in grid mode (lin)
gpu-gpaw profiling thoughts:

domain decomposition is especially inefficient on GPU: pack as much domain onto one GPU as possible (need larger memory)
parallelization over k-points remains good
our current 1-k-point on 8 cores is unrealistic for a 3x3x4
cpo thinks improving mpi performance may be difficult
lin thinks improving mpi performance may be important, since number of k-points decreases in future.
maybe we could pipeline other work while mpi is running?
why do we only get a x5 speedup for Pt 3x3x4? (samuli sees 8 to 11)

email the list about the real-density mixer (aj)
see if the mask stuff is applied every SCF step (aj)
think about randomization idea (aj)
evaluate effective of tzp+PK (aj)
rpa (jun)

keep on eye on crashes
rewrite code for the ZHERK

1/22/2013

libxc on gpu (lin)
work on automake stuff on Thursday
ping Miguel

AJ tries simple new-setup Pt system with rmm-diis
use same code with different setups or vice-versa
generate residual compared to converged

cpo compares FFTMixer to dacapo
rpa (jun)

merge trunk and print pointers to understand crashes
rewrite code for the ZHERK

Questions for Nvidia

how to use constants memory
constants memory: broadcast same 4 bytes to all threads of a warp, if the request is synchronized. a performance penalty if they don't.
must explicitly call it out with _ _ (for kepler "immediates" are stored in the constants memory if large enough, otherwise constant
instruction).

how to use texture memory
textures: if used in a "2D or 3D" manner, can only store 4 bytes. in kepler: can use ldg. memory has been ordered in a strange way
("snake") to allow better accesses to multi-dimensional stuff. ugly with double precision, because of the 4-byte size.

what does the 150GB/s mem bandwidth number mean?
it is sum of read/write bandwidth (each is 75GB/s)

optimization tricks: pre-fetch etc.
we get 85GB/s out of 150GB/s on 2075. use cudaDMA?
philippe measures 84% memory bandwidth (154GB/s) on K20

what does a queued warp do? (does it pre-fetch the memory)
yes, but can do better (e.g. cudaDMA)

reducing number of registers in kernel (does compiler typically do this optimally?)
can control register usage using launch bounds

how to learn with nvvp if we're memory/flops limited
philippe just counts instructions and measures MB/s by running code (no NVVP). He has some special code that counts instructions for
him in complicated cases.

understanding the nvvp columns
ECC decreases memory performance 20%. (118GB/s for 2075)
106GB/s is "quite good"
90% is the highest
maybe we should turn off ECC? Will lose statistics.

dynamic shared memory: extra launch parameters: stream and amount of shared memory to allocate
dynamically
instruction replay overhead:
 "sum" (different columns have different denominators) of next 3 columns:
 o can replay because needed to fetch multiple cache lines per global memory access instruction
(e.g. because of cache-line misalignment)
 o can replay because needed to fetch multiple cache lines per local memory access instruction
(NOTE: this is "LOCAL MEMORY CACHE REPLAY OVERHEAD")
 o shared memory bank conflict
global memory store efficiency: measure of stored bytes vs. "real" stored bytes (should only be
<100% if we have cache-line misalignments)
local memory overhead: measures local memory accesses (stack traffic, register spill traffic)
warp execution efficiency: measure of branch-divergence (percentage of threads that are active in
a warp)
global memory load efficiency: measure of loaded bytes vs. "real" loaded bytes (should only be
<100% if we have cache-line misalignments)
achieved occupancy: this is from "tail" from the numerology of number of waves of blocks
instructions issued: number of warps instructions issed to all SMs. compare to 1.15
GHz*#SMs*duration (maximum of 1)

NOTe internally fermi: really runs 2 half-warps over 2 clocks, but the above math still works out
for the simple-minded.

NOTE: executed: first time , issued: includes replays

best way to associate right GPU with right core (e.g. "taskset", "numactl")
if numactl settings OK, OS should take care of that. still have to correct taskset/cuCreate

ask about zher speedup numbers: for 4kx4k why does gemm improve by x30 but zher improves by x6?
gemm with large sizes is compute limited, which GPU does well. zher is memory limited.

using automake with cuda and c in one library?
no good answer

nvidia-proxy allocation: free up memory?
proxy doesn't provide a good way to free up memory

1/8/2013

libxc on gpu (lin)
work on automake stuff
get the cleaned-up ifdef version from Miguel

digest RPA timing measurements (lin)
AJ tries simple new-setup Ru system with rmm-diis

generate temperature residual plot
generate residual compared to converged

cpo compares FFTMixer to dacapo
paper (jun)
redo timing measurements (jun/lin)
understand new GPU box memory slowness (cpo)

12/18/2012

libxc on gpu (lin)
use common work file for CPU/GPU

digest RPA timing measurements (lin)
paper (jun)
redo timing measurements (jun)
understand timing measurements more fully (jun)
dacapo density mixing vs. GPAW (cpo)

12/11/2012

understand nvidia zgemm speedup plot (jun/cpo)
ANSWER: without thread: 29 faster on GPU. With 6 thread openMP get 5, which agrees with nvidia

understand why zher is x6 better on GPU but we see x24 with RPA (will put device sync in code) (jun/cpo)
ANSWER: CPU is memory bandwidth limited (so faster with 1 core). account for roughly x2, and the other x2 comes from overlapping
CPU/GPU computation.

does cuda5 improve ZHER? (jun/cpo) ANSWER: no improvement
libxc on gpu (lin)

use common work file for CPU/GPU
digest RPA timing measurements (lin)
think about moving lambda calc to GPU (jun) (ANSWER: no need, 10 or 20% improvement, best case)
try multiple surfaces with jacapo/gpaw-pw (aj)
paper (jun)

try calling dacapo density mixing from GPAW (cpo)
make sure all libxc self-tests run
why doesn't marcin's na.py converge, even with fixed density?
can the alphas for the nt_G really be used for the D's?

12/4/2012

understand nvidia zher speedup plot (jun/cpo)
libxc on gpu (lin)

use CUDA5
use common functional file for CPU/GPU
use common work file for CPU/GPU
read samuli old talk
run 3x4x3 pt system

RPA timing measurements (lin)
multi-alpha zher at a lower priority(jun)

reduce registers? prefetch?
explore the parameter space: tile-size

try multiple surfaces with jacapo/gpaw-pw (aj)
paper (jun)
try calling dacapo density mixing from GPAW (cpo)
install GPAW on Keeneland (cpo)
make sure all libxc self-tests run
move suncatgpu01 to CUDA5 (cpo)

11/27/2012

come up with list of items to ask about at nvidia mtgs
libxc on gpu (lin)

read samuli old talk
run 3x4x3 pt system
run PBE0
fix linking undefined symbol
make sure all self-tests run
put paramsize fix in for mgga and lda
test libxc 2.0.0

RPA timing measurements (lin)
multi-alpha zher at a lower priority(jun)

reduce registers? prefetch?
explore the parameter space: tile-size

try multiple surfaces with jacapo/gpaw-pw (aj)
paper (jun)
try calling dacapo density mixing from GPAW (cpo)
install GPAW on Keeneland (cpo)
"patch" file for libxc (only the memsets?) (cpo)
move suncatgpu01 to CUDA5 (cpo)
figure out how to softlink lda_c_pw.cuh (cpo)

11/20/2012

libxc on gpu (lin)
fix the zeroing (is there a cudamemset?)
make sure all self-tests run

multi-alpha zher at a lower priority(jun)
reduce registers? prefetch?
explore the parameter space: tile-size

try multiple surfaces with jacapo/gpaw-pw (aj)
paper (jun)
try calling dacapo density mixing from GPAW (cpo)
install GPAW on Keeneland (cpo)
merge libxc-gpu and libxc (patch memsets, and zero-ing in work) (cpo)
"patch" file for libxc (only the memsets?) (cpo)
move suncatgpu01 to CUDA5 (cpo)

11/13/2012

libxc on gpu (lin)
fix the zeroing (is there a cudamemset?)
double check timing for LCAO results
make sure all self-tests run
commit to svn

multi-alpha zher at a lower priority(jun)
reduce registers? prefetch?
explore the parameter space: tile-size

paper (jun)
try calling dacapo density mixing from GPAW (cpo)
install GPAW on Keeneland (cpo)
merge libxc-gpu and libxc (patch memsets, and zero-ing in work) (cpo)

11/6/2012

libxc on gpu (lin)
decide what to do about the hacks (with print statements)
copy less of the scratch data to GPU
run the self-tests
see if performance is better/worse
check that unmodified libxc still works
commit to svn

multi-alpha zher at a lower priority(jun)
reduce registers? prefetch?
explore the parameter space: tile-size

paper (jun)
try calling dacapo density mixing from GPAW (cpo)
install GPAW on Keeneland (cpo)
merge libxc-gpu and libxc (patch memsets, and zero-ing in work) (cpo)

10/30/2012

libxc on gpu (lin)
remove print statements
merge libxc-gpu and libxc
copy less of the scratch data to GPU
run the self-tests
do the memsets for lda/mgga
see if performance is better/worse

multi-alpha zher at a lower priority(jun)
reduce registers? prefetch?
explore the parameter space: tile-size

paper (jun)
try calling dacapo density mixing from GPAW (cpo)
install GPAW on Keeneland (cpo)

10/23/2012

libxc on gpu (lin)
remove print statements
test spin-polarized
understand why H numbers are different than gpugpaw_v2
merge libxc-gpu and libxc

multi-alpha zher at a lower priority(jun)
reduce registers? prefetch?
explore the parameter space: tile-size

paper (jun)
try calling dacapo density mixing from GPAW (cpo)
get journal recommendations from Nichols (cpo)

10/4/2012

libxc on gpu (lin)
PBEsol-X
put libxc in samuli branch at "low-level" (libxc.py?)
solve zero-ing problem and stride problem

multi-alpha zher (jun)
reduce registers? prefetch?
explore the parameter space: tile-size

paper (jun)
create infrastructure for running convergence tests (aj)
try calling dacapo density mixing from GPAW (cpo)

9/25/2012

libxc on gpu (lin)
test PBEsol
cleanup existing code (delete commented lines, unused code)
put in p_d_gga an p_d_mgga, for consistency
have 1 beautiful program that runs a lda/gga/mgga functional on both CPU/GPU and times them.
think about integrating with samuli

multi-alpha zher (jun)
reduce registers? prefetch?
explore the parameter space: tile-size

paper (jun)
create infrastructure for running convergence tests (aj)
help with all the above (cpo)

work on understanding jacapo density mixing

9/18/2012

libxc on gpu (lin)
focus on tpss_x (summarize pattern for moving functional to gpu)
ask samuli if there are functionals he would like us to move?
figure out how to get nested param-size (will change "p" struct for this, in general it would be a function to deep-copy params)
figure out how to get p_d into the functional (will change "p" struct for this)
kinetic functionals
understand PBE instruction replays and constants-memory
think about cleanup of p
summarize pattern for moving functional to gpu
better pattern for p_d?
think about integrating with samuli

multi-alpha zher (jun)
reduce registers? prefetch?
explore the parameter space: tile-size

paper (jun)
create infrastructure for running convergence tests (aj)
help with all the above (cpo)

work on understanding jacapo density mixing

9/5/2012 and 9/12/2012

libxc on gpu (lin)
do mgga (summarize pattern for moving functional to gpu)
figure out how to get nested param-size (will change "p" struct for this, in general it would be a function to deep-copy params)
figure out how to get p_d into the functional (will change "p" struct for this)
kinetic functionals
understand PBE instruction replays and constants-memory
think about cleanup of p
summarize pattern for moving functional to gpu
better pattern for p_d?
think about integrating with samuli

multi-alpha zher (jun)
run nvvp
look at occupancy calculator (get registers from nvvp)
think of new ideas to speed-up
explore the parameter space: threads-per-block, tile-size

paper (jun)
create infrastructure for running convergence tests (aj)
help with all the above (cpo)

work on understanding jacapo density mixing

8/28/2012

libxc on gpu (lin)
do mgga (summarize pattern for moving functional to gpu)
figure out how to get nested param-size (will change "p" struct for this, in general it would be a function to deep-copy params)
figure out how to get p_d into the functional (will change "p" struct for this)
kinetic functionals
understand PBE instruction replays and constants-memory
think about cleanup of p
summarize pattern for moving functional to gnu
better pattern for p_d?
think about integrating with samuli

multi-alpha zher (jun)
understand current code
understand nvidia suggestions

fix timing of cublas vs. source-code zher and run benchmark
paper (jun)
create infrastructure for running convergence tests (aj)
help with all the above (cpo)

work on understanding jacapo density mixing

8/21/2012

libxc on gpu (lin)
performance plot for RPBE (lin)
do mgga (summarize pattern for moving functional to gpu)
understand crash for large number of grid points
figure out how to get nested param-size (will change "p" struct for this, in general it would be a function to deep-copy params)
figure out how to get p_d into the functional (will change "p" struct for this)
read thru func_aux
kinetic functionals
time PBE
look at nvvp to understand bottleneck
think about cleanup of p
summarize pattern for moving functional to gnu
better pattern for p_d?
think about integrating with samuli

multi-alpha zher (jun)
paper (jun)
create infrastructure for running convergence tests (aj)
help with all the above (cpo)

add Na2O4 calculation to AJ infrastructure
understand default jacapo/gpaw parameters/algorithms/initial-values

8/15/2012

libxc on gpu (lin)
performance plot for RPBE (lin)
work on either the mgga or the copying of "p"
understand crash for large number of grid points
read thru fund_aux
time PBE
look at nvvp to understand bottleneck
think about cleanup of p
summarize pattern for moving functional to gnu
better pattern for p_d?

evaluate possible gpu purchase (jun)
multi-alpha zher (jun)
paper and speeding up more (FFT?) (jun)
create infrastructure for running convergence tests (aj)
help with all the above (cpo)

add Na2O4 calculation to AJ infrastructure
understand default jacapo/gpaw parameters/algorithms/initial-values

8/8/2012

libxc on gpu (lin)
performance plot for RPBE (lin)
work on either the mgga or the copying of "p"

evaluate possible gpu purchase (jun)
multi-alpha zher (jun)
paper and speeding up more (FFT?) (jun)
create infrastructure for running convergence tests (aj)
help with all the above (cpo)

add Na2O4 calculation to AJ infrastructure
understand default jacapo/gpaw parameters/algorithms/initial-values

7/11/2012

libxc on gpu (lin)
evaluate possible gpu purchase (jun)
multi-alpha zher (jun)
create infrastructure for running convergence tests (aj)
help with all the above (cpo)

add Na2O4 calculation to AJ infrastructure
understand default jacapo/gpaw parameters/algorithms/initial-values

6/27/2012

libxc on gpu (lin)
more convergence test cases (aj)
think about FFT cutoff (aj)
xsede machines

generate benchmark strong-scaling plots for exx/rpa for forge (jun)
create proposal rough draft (jun)

finish libxc (cpo)

6/20/2012

libxc on gpu (lin)
more convergence test cases (aj)
think about FFT cutoff (aj)
xsede machines

install software on forge (cpo)
generate benchmark strong-scaling plots for exx/rpa for gordon/forge (no swapping!) (jun)

finish libxc (cpo)

6/13/2012

libxc on gpu (lin)
more convergence test cases (aj)
think about FFT cutoff (aj)
xsede machines

install software on forge (cpo)

understand gordon error (cpo)
generate benchmark strong-scaling plots for exx/rpa for forge (no swapping!) (jun)

finish libxc (cpo)

6/13/2012

try libxc on gpu (lin)
more convergence test cases (aj)
think about FFT cutoff (aj)
see if we get 50% speedup with new zher code (jun)
xsede machines

install software (jun/cpo)
generate benchmark strong-scaling plots for exx/rpa for forge (no swapping!) (jun)

work on libxc (cpo)

5/30/2012

understand x/c kernel bottleneck with nvvp (lin)
trying cufft to see what we gain (lin)
more convergence test cases (aj)
think about FFT cutoff (aj)
GEAM, ZHERK (jun)
xsede machines (jun/cpo)

generate benchmark strong-scaling plots for exx/rpa (no swapping!)
use std err to look for node-to-node "time variations"

work on libxc (cpo)

5/23/2012

understand x/c kernel bottleneck with nvvp (lin)
trying cufft to see what we gain (lin)
use VO as convergence test case (aj)
look at special-metric-weight convergence (aj)
think about FFT cutoff (aj)
GEAM, ZHERK (jun)
build on hopper and xsede machines (jun/cpo)

generate benchmark strong-scaling plots for exx/rpa (no swapping!)
use std err to look for node-to-node "time variations"

work on libxc (cpo)

5/9/2012

rpbe kernel (lin)
does memcpyasync need cudamallochost?
fix stream behavior and try with 1,2,4,8,16 streams
understand stream behaviour with nvvp

zher streams(jun)
in benchmark, have separately variable nstream/nw
can we see whether we have 4 or 16 streams?
understand stream behaviour with nvvp

density mixing (aj)
work on libxc (cpo)

5/2/2012

looking at EXX bottleneck (rewriting) (jun)
use cuda streams for small RPA systems (jun)
libxc integration (cpo)
understand MKL benchmark (jun/cpo)
pycuda (cpo)
understand RPBE kernel: (lin)

understand "double" problem
vary np, block_size, nstreams
loop testfunc many times
longer term: look at jussi/samuli kernel for ideas

4/25/2012

looking at EXX bottleneck (rewriting) (jun)
postpone work on ZHER stuff until we have news from INCITE (jun)
talk to Frank about computing time applications (cpo)
understand MKL benchmark (jun/cpo)
libxc integration (cpo)

4/18/2012

look at reduced-scope libxc example plus RPBE (lin)

if there is time, benchmark the RPBE kernel (lin)
zher performance improvement with multiple streams (jun)
make INCITE version work (jun/cpo)
move to libxc 1.2 (cpo)

4/11/2012

libxc parallelization (lin)
libxc integration (cpo)
understand missing time in cublas mode (jun/cpo)
how to put the gemm in PW mode in a fairly neat way (lin/cpo)
start working on multiple-alpha kernel (MAZHER) (jun/cpo)
work on INCITE proposal (jun/cpo)

3/28/2012

gemm (lin)
run pt3x3 (cpo)
libxc (cpo, and lin if he finishes gemm)
cher/fft (jun)
fix gpu allocation (cpo)
circular dependency problem with monkhorst_pack (cpo)
mpi failure with cuzher (cpo)

3/21/2012

batch queue for GPU machine (cpo)
fft/gemm/gemv (lin/jun/cpo)
single precision cher instead of zher? (jun/cpo)
new libxc (cpo)
fix libfftw detection (cpo)
improve zher in cuda (long project, jun/cpo)
move "expand" from python into C, post to mailing list? (lin)
look at spin paired (cpo)
run pt3x3 (cpo)

3/14/2012

pycuda compatibility (cpo)
private svn (cpo)
try nvvp/transpose (or C60 with more grid points) for >5 minutes (lin)
send mail to nvidia or list to understand why nvvp profile cuts off after 5 minutes (lin)
understand bottleneck in get_wfs (jun)
implement fft/gemv (cpo)
is there a cuda library for trace like zgeev (cpo)
run a 3x3x3 system to see if bottlenecks stay the same (cpo)
driver hang status (cpo)
understand how to fix gs.py bottlenecks in more detail (lin/cpo) using gpaw profiler:

pseudo density: density.py: self.calculate_pseudo_density(wfs) (cpo)
projections: overlap.py: wfs.pt.integrate(psit_nG, P_ani, kpt.q) (cpo)
RMM-DIIS: eigensolvers/rmm_diis.py: lots of lines (cpo)
projections: eigensolvers/rmm_diis.py: wfs.pt.integrate(dpsit_xG, P_axi, kpt.q) (lin)
calc_h_matrix: eigensolvers/eigensolver.py: H_nn = self.operator.calculate_matrix_elements, hamiltonian.xc.correct_hamiltonian_matrix
(lin)
rotate_psi: eigensolvers/eigensolver.py (lin)

Accessing suncatgpu01 SVN

We have put a version of GPAW in a local SVN repository on suncatgpu01. To access it, use the following:

svn co svn://localhost svngpaw

You can put whatever you want for the last argument (local directory name).

General Topics

Stanford CUDA course: http://code.google.com/p/stanford-cs193g-sp2010/
(Everyone) Understand gpaw (read paper)

what other steps could we parallelize?
Can we do existing parallelization better? (e.g. use ideas in Todd's GPU papers)

(Everyone) Go through CUDA tutorial .here
Understand blocks/threads/warps and how they map onto GPU hardware (details of which can be seen with "deviceQuery" command)

(Lin) Find tool to measure:

http://code.google.com/p/stanford-cs193g-sp2010/
http://llpanorama.wordpress.com/cuda-tutorial

memory bandwidth usage
gpu flops usage

(Jun) :
Parallelize LCAO/planewave/RPA (zher performance?)? non-rmm-diis eigensolver?
merge with trunk?

(cpo) :
Understand code flow
Understand where the ~23 cuda kernels are used
Understand which bottlenecks we need to tackle

Do another gpu-gpaw install (to learn)
Understand Pt 3x4x3 CPU/GPU difference versus 3x2x3 (performance scaling with system size)
Can multiple CPU processes win by using the same GPU?
Understand pycuda
Understand gpaw interface to cuda (c/cuda subdirectory)
Read CUDA programming manual .here
Do all gpaw self-tests pass with GPUs?
Can we get bigger bang-per-buck with GeForce instead of Tesla? (don’t need GPUDirect, maybe live with less memory/bandwidth? double
precision worse)
Understand cuda better:

Does Samuli use pinned memory correctly?
run/understand cuda a bandwidth benchmark
Could we use GPUdirect for MPI data transfer?

Does the GPU performance scale with the product of gridpoints*bands? Might be a combinatorial effect with the bands, linear with the grid points?
Duplicate Samuli results
Update to most recent version in svn
Understand where gpaw scaling maxes out for Pt 3x4x3
Why is CO on 2 GPUs slower than on 8 CPUs?
Can we do something less precise in the vacuum area? (fewer grid points?)
Do we need a fatter interconnect for GPUs?

http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf

	RPA and libXC Meeting Minutes

