
Running HPS Java

Before You Start
Distribution Jars
Running the Jar File

Running the Job Manager
Running a Specific Class's Main Method
Running Tests

Command Line Tools
Job Manager

Job Manager Command Line Usage
Job Manager Command Line Options

EvioToLcio
EvioToLcio Command Line Usage
EvioToLcio Command Line Options Table

Run Scripts
Steering Files

Steering File Locations
Steering File Variables

System Properties
Java Arguments
Logging and Debugging

Logging Config
Log Levels

Log Levels Table
Defining Loggers

Before You Start

Before reading these instructions, you will want to read , which explains how to build or get an HPS Java distribution jar file.Installing HPS Java

Distribution Jars

The distribution jar file contains all of the project's dependencies in a distribution that can be run standalone using the command. The distribution will java
have "-bin" in the name.

The jar file will be found in your copy of HPS Java after you have built the project locally. You can use a simple command to check that it was built ls
correctly.

ls distribution/target/hps-distribution-*-bin.jar

Any references to in command line syntax within these instructions should be replaced by the complete path to the distribution jar hps-distribution-bin.jar
which was built.

Running the Jar File

The distribution jar can be run in two basic ways. You may run the default method using the switch, or the - switch can be used along with the main -jar cp
path to a class's method.main

Running the Job Manager

Using the switch from the command line will run the which processes LCIO files using a steering file configuration.-jar JobManager

java -jar ./distribution/target/hps-distribution-bin.jar [args]

Without any arguments, it will print the command line options and then exit.

Running a Specific Class's Main Method

You can also run the main method from any class in the jar, for example:

java -cp ./distribution/target/hps-distribution-bin.jar org.hps.evio.EvioToLcio [args]

If there is a "class not found" error, then check the following: the correctness of the path to the jar, the existence and proper definition of a main method
within the Java class, and the read permissions on the jar file.

https://confluence.slac.stanford.edu/display/hpsg/Installing+HPS+Java
http://www.lcsim.org/sites/hps/apidocs/org/hps/job/JobManager.html

A class can only be accessed from the command line if it defines a valid main method.

package org.example;

public class MyClass {
 public static void main(String[] args) {
 System.out.println("hello main");
 }
}

To be directly accessible from the command line, a class must also have the following features.

It must be marked as public.
It must have a method called (as shown above).public static main
The main method must have an array of strings as an input variable.

Assuming that was bundled inside the distribution (which it isn't), then it could be run from the command line as follows:MyClass

java -cp ./distribution/target/hps-distribution-bin.jar org.example.MyClass arg1 arg2 [...]

Most classes that implement a command line interface will print out a help message when run with no additional options e.g.

java -cp ./distribution/target/hps-distribution-bin.jar org.hps.evio.EvioToLcio

By convention, the switch is also usually used to print out a help menu.-h

java -cp ./distribution/target/hps-distribution-bin.jar org.hps.evio.EvioToLcio -h

The specific command line syntax is unfortunately not standardized across all tools in the project and will depend on what was implemented in that class
by the particular author.

Running Tests
Regular unit tests can be run from the command-line using a syntax like the following:

mvn test -Dtest=[TestClassName]

Integration tests are run from the directory with the syntax:integration-tests

mvn verify -Dit.test=[TestClassName]

In both cases, the class should be provided without the package name.

More information about running integration tests can be found .here

Command Line Tools

Job Manager

The runs a series of Drivers defined in an file on input events from one or more LCIO files. The XML steering file may contain lists JobManager lcsim xml
of input file tags, or the input files may(more typically) be supplied by command line arguments.

Job Manager Command Line Usage

http://maven.apache.org/surefire/maven-failsafe-plugin/examples/single-test.html
http://www.lcsim.org/sites/hps/apidocs/org/hps/job/JobManager.html
https://confluence.slac.stanford.edu/display/ilc/lcsim+xml

[1026 $] java -jar ./hps-java-trunk/distribution/target/hps-distribution-3.6-SNAPSHOT-bin.jar
Feb 18, 2016 4:02:27 PM org.lcsim.job.JobControlManager printHelp
INFO: java org.lcsim.job.JobControlManager [options] steeringFile.xml
usage:
 -b,--batch Run in batch mode in which plots will not be
 shown.
 -D,--define <arg> Define a variable with form [name]=[value]
 -d,--detector <arg> user supplied detector name (careful!)
 -e,--event-print <arg> Event print interval
 -h,--help Print help and exit
 -i,--input-file <arg> Add an LCIO input file to process
 -n,--nevents <arg> Set the max number of events to process
 -p,--properties <arg> Load a properties file containing variable
 definitions
 -r,--resource Use a steering resource rather than a file
 -R,--run <arg> user supplied run number (careful!)
 -s,--skip <arg> Set the number of events to skip
 -w,--rewrite <arg> Rewrite the XML file with variables resolved
 -x,--dry-run Perform a dry run which does not process events

Job Manager Command Line Options

Switch Description Notes

-b Activates batch mode plotting so plots will not
be shown when running job.

This switch can be used to suppress the display of interactive plots for batch usage.

-D Add a variable definition that applies to the input
steering file.

All variables in the XML input file must be resolved using this switch or a fatal exception
will occur.

-d Set the name of the detector model. This should be a valid detector model defined in of HPS Java. detector-data/detectors
Usually this does not need to be set by the user.

-e Print out an informational message every N
events.

When this is left out no event-by-event print outs will display during the job.

-h Print help and exit. Using this with other arguments will still cause the help message to print and job will exit
afterwards.

-i Add an LCIO input file. This switch can be used multiple times to specify more than one input file.

-n Maximum number of events to run in job. To run through all events in the input file(s), do not set this switch.

-p Load a properties file containing steering file
variable definitions.

The input properties file should define for each variable that needs to name: value pairs
be defined in the steering file.

-r Treat the supplied steering as a classpath
resource rather than a file.

These are typically resources from in the steering-files module of HPS org/hps/steering
Java.

-R Set the run number to be used when initializing
the conditions system.

This has the side effect of "freezing" the conditions system, as the run numbers from the
input events will be ignored.

-s Skip N events at the beginning of the job. This will not skip N events in each file but the first N events read by the job.

-w Rewrite the XML steering file with the variables
resolved.

This can be used as a simple template engine to generate steering files without
variables in them.

-x Execute in dry run mode which means actual
job will not execute.

This switch is typically used to check for initialization errors in the job.

The steering file is a mandtaory argument, and it is supplied as an extra argument rather than as a command switch.

If a detector name and run number are both supplied as arguments from the command line, then the conditions system will be initialized and frozen,
meaning that subsequent event numbers from data will be ignored.

Here is an example command using most of these switches together.

java -jar ./hps-java-trunk/distribution/target/hps-distribution-bin.jar -b -DoutputFile=output -d HPS-
EngRun2015-Nominal-v3 -e 100 -i input.slcio \
-n 1000 -p myvars.prop -r -R 5772 -s 10 -w myjob.xml -x /org/hps/steering/dummy.lcsim

The above command is actually nonsense and will not work!

EvioToLcio

The tool converts files to format and optionally may run a steering file job on the in-memory events. This scheme allows the EvioToLcio EVIO LCIO
conversion and reconstruction to run within the same job for efficiency.

EvioToLcio Command Line Usage

[1037 $] java -cp ./distribution/target/hps-distribution-3.6-SNAPSHOT-bin.jar org.hps.evio.EvioToLcio
EvioToLcio [options] [evioFiles]
usage:
 -b enable headless mode in which plots will not show
 -d <arg> detector name (required)
 -D <arg> define a steering file variable with format -Dname=value
 -f <arg> text file containing a list of EVIO files
 -h print help and exit
 -L <arg> log level (INFO, FINE, etc.)
 -l <arg> path of output LCIO file
 -m <arg> set the max event buffer size
 -M use memory mapping instead of sequential reading
 -n <arg> maximum number of events to process in the job
 -r interpret steering from -x argument as a resource instead of a
 file
 -R <arg> fixed run number which will override run numbers of input
 files
 -t <arg> specify a conditions tag to use
 -v print EVIO XML for each event
 -x <arg> LCSim steeering file for processing the LCIO events

EvioToLcio Command Line Options Table

Switch Description Notes

-b Activates batch mode plotting so plots will not be shown when
running job.

-d Set the name of the detector model. This should be a valid detector model from the detector-data/detectors
directory.

-D Add a variable definition that applies to the input steering file.

-f Text file containing a list of input EVIO files, one per line.

-L Set the output logging level. DEPRECATED

Use logging config file or class instead.

-l Path of the output LCIO file.

-m Set the max event buffer size. Experts only.

-M Use memory mapping in EVIO reader instead of sequential
access.

Experts only.

-n Maximum number of events to process in the job.

-R Set the run number to be used when initializing the conditions
system.

-t Specify a conditions tag for filtering conditions records.

-v Print out EVIO converted to XML for every event. For verbose debugging of events.

-r Interpret steering file from -x as a classpath resource rather than
a file.

-x Steering file Could be resource or file depending on if -r switch is used.

Here is an example showing how to use most of these command line options.

http://lcsim.org/sites/hps/apidocs/org/hps/evio/EvioToLcio.html
https://confluence.slac.stanford.edu/display/hpsg/EVIO+Data+Format
https://confluence.slac.stanford.edu/display/hpsg/LCIO+Data+Format

java -jar ./hps-java-trunk/distribution/target/hps-distribution-bin.jar org.hps.evio.EvioToLcio -b -
DoutputFile=output -l lcio_file_output -m 50 \
-v -M -n 1000 -d HPS-EngRun2015-Nominal-v3 -R 5772 -t pass1 -r -x /org/hps/steering/dummy.lcsim file1.evio
file2.evio file3.evio [etc.]

Some of these arguments are similar to the job manager, but the steering file is supplied in a different way. Evio2Lcio also uses a command switch to
specifiy the steering file, whereas the job manager expects this as an extra argument without a command switch.

Run Scripts

Run scripts that wrap a number of HPS Java command line utilities are generated when building the distribution. These can be used to easily run tools in
the project without typing the full java command.

After the build completes, they should be found in this HPS Java directory.

distribution/target/appassembler/bin/

For instance, the EvioToLcio utility can be run using this script.

distribution/target/appassembler/bin/evio2lcio.sh [...]

These scripts have several advantages over running the commands yourself.java

A full classpath is created in the script so it is not necessary to use the distribution jar.
Reasonable JVM options are set such as the min heap size.
Logging is configured automatically by a default logging properties file.
You do not need to type all the Java boilerplate commands like "java -jar".
You do not need to know the corresponding class's full name in order to run its command line utility.

Using symlinks to these scripts should work fine e.g.

ln -s distribution/target/appassembler/bin/evio2lcio.sh
./evio2lcio.sh

When using these scripts, you cannot directly supply Java system properties, so the JAVA_OPTS variable should be used instead.

export JAVA_OPTS="-Dorg.hps.conditions.enableSvtAlignmentConstants"

The full list of Java system properties to be used should be included in this variable. You should not set the options or -Xmx -Djava.util.logging.config.class,
 as these are set by each script.

Steering Files

Steering File Locations

The standard location for steering files is in HPS Java.steering-files/src/main/resources/org/hps/steering/

This folder is organized into the following sub-directories which contain sets of related steering files.

Directory Description

analysis includes analysis template

broken broken steering files (which may be removed at any time!)

calibration not really used currently

monitoring monitoring application steering files

production various production steering files including event filtering and DQM

readout readout simulation drivers to be run on MC data from SLIC

recon production reconstruction steering files

https://confluence.slac.stanford.edu/display/hpsg/SLIC

users user files (organized into sub-directories by user name)

These steering files can be accessed using their path on disk, or they may be referenced as classpath resources. The exact syntax will depend on the
command line tool.

For example, a steering file resource can be accessed like this using the job manager:

java -jar ./hps-java/distribution/target/hps-distribution-bin.jar -x /org/hps/steering/recon
/EngineeringRun2015FullRecon.lcsim [...]

The same steering file could also be accessed as a file from the local copy of HPS Java.

java -jar ./hps-java/distribution/target/hps-distribution-bin.jar hps-java-trunk/steering-files/src/main
/resources/org/hps/steering/recon/EngineeringRun2015FullRecon.lcsim [...]

You can use a file rather than a resource if you running a steering file which is not checked into HPS Java or you are using a modified steering file that has
not been packaged into the distribution jar.

Steering File Variables

Suppose a steering file contains the following variable definition:

<driver name="MyDriver" type="org.example.MyDriver">
 <someNumber>${numVar}</someNumber>
</driver>

The variable would then need to be resolved with a command such as:

 java -cp ./distribution/target/hps-distribution-bin.jar org.hps.evio.EvioToLcio -DnumVar=1234 [...]

All variables defined in the XML steering files must be resolved from the command line or an error will occur and the job will terminate.

System Properties

The command line tools may be affected by some Java system properties.

Name Description Values

java.util.logging.config.file Java logging config file described in doclogging package

java.util.logging.config.class Java logging config initialization class described in logging package doc

hep.aida.IAnalysisFactory AIDA backend factory class
hep.aida.ref.AnalysisFactory - default

hep.aida.jfree.AnalysisFactory JFree -

backend
hep.aida.ref.BatchAnalysisFactory - batch
mode (no plot display)

org.hps.conditions.
enableSvtAlignmentConstants

Enables application of SVT alignment constants from
conditions db to the detector model

Actual value is not checked.

org.hps.conditions.connection.file Properties file with connection settings for conditions database should point to a valid connection.prop file

org.hps.conditions.connection.
resource

Resource that points to properties file with connection
settings for conditions database /org/hps/conditions/config/jlab_connection.

prop - default connection

These values are set as system properties in Java itself rather than the command line tool.

java -Dorg.hps.conditions.enableSvtAlignmentConstants [...]

When set in this way, these values are accessible to the framework as .Java system properties

https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

Java Arguments

The JVM accepts a number of command line arguments that alter its behavior.

In particular, when running you will likely want to increase the default heap space, as the default is generally too low for running full reconstruction java
jobs.

This command will change the heap space to 2 gigabytes:

java -Xmx2g [...]

Also, you may want to run the JVM in server mode.

java -server [...]

The server JVM has been optimized for performance speed rather than responsiveness, and it should run faster than the default client JVM.

Logging and Debugging

Logging Config

HPS Java uses the built-in logging facilities of Java which are described in the .logging package documentation

Each package in HPS Java has a default level which is set in the following config file:

logging/src/main/resources/org/hps/logging/config/logging.properties

This config, or any other custom logging config, can be activated from the command line by setting the config file property to its path as a Java argument.

java -Djava.util.logging.config.file=logging/src/main/resources/org/hps/logging/config/logging.properties [...]

Alternately, you may also activate a Java class which will load this configuration.

java -Djava.util.logging.config.class=org.hps.logging.config.DefaultLoggingConfig [...]

Log Levels

These are the available log levels, in descending order.

Log Levels Table

Level Description Use

SEVERE severe error message usually meaning program should halt unrecoverable errors that halt the program

WARNING warning message indicating a non-fatal error or problem warning messages

INFO informational messages informational messages that should usually print when the program runs

CONFIG configuration messages printing out config information for a class or tool

FINE debug print outs high level debugging messages that should not typically be active

FINER more verbose debug print outs more verbose debugging messages

FINEST most verbose debug messages the most verbose debugging messages

ALL print all error messages when logger should always print all messages

OFF disable all messages when logger should be completely disabled from printing

Each logger inherits by default from the global log setting.

https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html

This is defined in the config file as follows.

default global level
.level = WARNING

If a package's log level is not explicitly configured, then it will inherit the default log level from the global logger.WARNING

Defining Loggers

In the config file, loggers are defined and configured by their package rather than class.

evio
org.hps.evio.level = CONFIG

In the above config, any logger within the package will have a log level of .org.hps.evio CONFIG

A class's logger is typically defined within the codebase using the following template.

package org.example;

import java.util.logging.Logger;

class MyClass {

 static private final Logger LOGGER = Logger.getLogger(MyClass.class.getPackage().getName());

 void someMethod() {
 LOGGER.info("some method was called");
 }
}

The handler and the level should be assigned within the code, because changing the level would require recompilation. Instead, the level should be not
defined using the config file as described above.

	Running HPS Java

