
Quantum Espresso
Submitting Batch Jobs

The are the commands for ASE/python mode and the "native" (no ASE/python) mode:

esp-ver-bsub <version> myscript.py
esp-ver-bsub-native <version> -q suncat-test -o my.log -n 8 pw.x -in pw.inp

Dealing With Memory Issues (e.g. Swapping Jobs)

For a "typical" espresso job (default planewave parallelization):

if a job swaps on suncat (24GB nodes), run it on suncat2 (48GB nodes)
if a job swaps on suncat2 (48GB nodes), run it on suncat3 (64GB nodes)
if a job swaps on suncat3, use 2 suncat3 nodes. suncat3 (only!) has a fast interconnect that should help them run reasonably well on multiple
nodes

In the longer term we would like to have a memory estimator that will allow you to choose the best queue in advance, although posts on the espresso
mailing list suggest this may be difficult.

k-point Parallelization

NOTE: typically one does NOT do k-point parallelization for large systems. Only the gamma-point is necessary.
k-point parallelization across nodes will not be as cpu-efficient as planewave parallelization within one node, so use it judiciously
k-point parallelization is not as memory efficient as planewave parallelization, but it is supposed to scale better to more nodes (ask cpo if you want
a better explanation). In particular, my understanding is that k-point parallelization will not reduce the memory usage per node.
vossj and cpo have not yet seen good scaling behavior for the k-point parallelization for small systems (2x2x3 system). lausche has reported
good k-point scaling for 3x3x4 systems. there have been some not-understood hangs with npool=3 or 4 (see below).
to turn on k-point parallelization:

for ase mode: add parameter "parflags='-npool 2'" to the espresso object. This is a general-purpose for passing run-time options string
to espresso executables.
for native mode: add something like "-npool 2" at the of the lineend

an example for 16 cores (2 nodes) and npool=2: each of the 2 pools of 8 cores would parallelize over planewaves, but the 2 pools would process
pairs of k-points in parallel. If one had 9 k-points, they would get processed in pairs, but the last one would only be processed on one node,
leaving the other idle, which is not ideal.
if you have done it correctly, you should see a line about "K-points division" in your espresso log file (the planewave parallelization produces a line
like "R & G space division")
there is a chicken-and-egg problem: to run your job one needs to know the number of reduced k-points (to determine npool) however one has to
run the job to learn what this number is. a workaround for this would be to run it first in the test queue to learn the reduced number of k-points.

Reducing Memory Usage for Large Systems

From http://www.democritos.it/pipermail/pw_forum/2008-January/008101.html

Excerpt (relevant for the "native" (non-ASE) mode):

consider reducing the planewave cutoff, it won't affect your results too muchIF
is your system an isolated system? then use this keyword:

K_POINTS gamma

it will use k=0 only (which is all you need for an isolated system) and exploit various tricks to reduce memory usage
setting option "diago_david_ndim" to the minimum (2) and "mixing_ndim" to a smaller value (4) reduces memory usage, but may increase CPU
time
using diagonalization='cg' will also reduce memory usage, but it will increase CPU time by a sizable amount
do not calculate stress if you do not need to: it is expensive

In ASE-mode we are currently unable to set the "K_POINTS gamma" field and "diago_david_ndim". The other two can be specified with the convergence
keyword. "mixing_ndim" is "mix", and "diagonalization" is "diag". For example:

convergence = {'energy':1e-6,
 'mixing':0.7,
 'maxsteps':100,
 'mix':4,
 'diag':'cg'},

http://www.democritos.it/pipermail/pw_forum/2008-January/008101.html

Example Scripts

A simple optimization: esp.py
Calculate density-of-states: espdos.py
Plot density-of-states: espdosplot.py
NEB: espneb.py

Running in "native" mode (see command above): esp-ver-bsub-native pw.inp

Versions

Versi
on

Date Comment

1 12/3
/2012

initial version

2 12/5
/2012

use mkl fftw

3 12/7
/2012

UNSTABLE version: developers allowed to change espresso.py. Users can overwride espresso.py by putting their own espresso.py in
directory $HOME/espresso

4,4a 12/10
/2012

update to the latest svn espresso-src and espresso python

5 2/14
/2013

Entropy corrections added and default parameters changed (smearing type and width)

6,6a 3/7
/2013

Many changes: move to combination of dacapo/espresso pseudo potentials (previously just dacapo), add spin polarized BEEF

7,7a 4/5
/2013

Update the python interface for bug fixes. Numbers shouldn't change from v6

8,8a 4/5
/2013

Important bug fixes: no need for calc.stop(), support for kpoint parallelization with ASE, fix for rhel5 nfs auto mount problem. Numbers
shouldn't change from v6/v7.

9,9a 5/28
/2013

Add PDOS/NEB calculations. new libbeef interface allows for adding additional beef functionals in future.

10,1
0a

6/19
/2013

Fix problem with pipe buffering that crashed NEB. Dump more information about python/fortran executables to output.

11 7/2
/2013

Bug fix for end of job race condition giving "broken pipe" error

12 7/11
/2013

Chuan adds new 'diskio' option to allow get_work_function to succeed (was incompatible with avoidio=True).

13,1
3a

9/4
/2013

BROKEN (setupenv renamed). band structure calculations and ase constraints being passed down to espresso's internal relaxation
routines. calculation results should not change

14,1
4a

9/10
/2013

fix bug in espresso.py forces, fixed bug with LDA+U PDOS in espresso fortran

15,1
5a

9/10
/2013

fix bug where espresso.py would crash if it was given a not-understand ASE constraint, even using an ASE optimization

SUNCAT Quantum Espresso Talks

Introduction/Usage (Johannes Voss): jvexternal.pdf

Accuracy (Jewe Wellendorff, Keld Lundgaard,): NOTE: password protected because it contains VASP benchmark data kelu.pdf

Speed/Convergence (AJ Medford): aj.pptx

Scaling behavior (Christopher O'Grady): espscaling.pptx

Private Espresso Builds

Copy this script, and then edit the appropriate lines at the top:

/afs/slac/g/suncat/share/scripts/privesp.csh

https://confluence.slac.stanford.edu/download/attachments/132229103/esp.py?version=1&modificationDate=1369774302000&api=v2
https://confluence.slac.stanford.edu/download/attachments/132229103/espdos.py?version=1&modificationDate=1369774302000&api=v2
https://confluence.slac.stanford.edu/download/attachments/132229103/espdosplot.py?version=1&modificationDate=1369774302000&api=v2
https://confluence.slac.stanford.edu/download/attachments/132229103/espneb.py?version=2&modificationDate=1371693999000&api=v2
https://confluence.slac.stanford.edu/download/attachments/132229103/pw.inp?version=1&modificationDate=1380067279000&api=v2
https://confluence.slac.stanford.edu/download/attachments/132229103/jvexternal.pdf?version=1&modificationDate=1362622174000&api=v2
http://www.slac.stanford.edu/~cpo/suncat/kelu.pdf
https://confluence.slac.stanford.edu/download/attachments/132229103/aj.pptx?version=1&modificationDate=1362622174000&api=v2
https://confluence.slac.stanford.edu/download/attachments/132229103/espscaling.pptx?version=1&modificationDate=1362622174000&api=v2

Avoid syntax error in Python run scripts

There is a simple trick to catch syntax errors even before submitting them to the test queue. Just wrap the ase submit command in the following function (e.
g. via your bashrc) and a faulty python script will be exited with an error message without waiting in any queue.

 function esp(){
 python -m py_compile ${1}
 if [$? -ne 0]
 then
 echo "Not compiling"
 return 1
 fi
 chmod -v 755 $1
 esp-ver-bsub 18 $@
 }

 Espresso ASE To-Do List

merge branch with espresso trunk
become part of ASE svn (need to follow new ASE guidelines)
dry-run mode to get memory estimate
understand failing espresso tests
record uspp and executable directory in output (and/or svn version, somehow?)
neb (done)
constraints interface to pass ASE constraints to espresso
dos (done)
bandgaps (done)
separation of site-specific code from ASE code (including site-specific "scratch") (done)
make beef errors accessible from ASE
beef self-tests integrated with espresso self-tests
support kpoint parallelization (done)
look into other parallelization (openmp, scalapack)
documentation/examples (including on ASE website)
fix popen warnings on suncat3
eliminate difference between batch/non-batch running
how to get automatic python recompilation with setup.py build approach?
can we eliminate os-dependent stuff, like grep/egrep/sed?
eliminate need for calc.stop() with multiple calculations (done)
get work function without dumping out the electrostatic cube file? (chuan has tools for this)
dipole correction goes in the middle of unit cell by default (in python, chuan makes sure it goes in the biggest gap) (done)

	Quantum Espresso

