
Recipe for GlastRelease and VS 2008

Prerequisites

SCons Overview

Read at least the in the Workbook. Developers should also read .The third page in the collection, SCons Introduction page SCons for Developers Making
, is of less interest if you're planning to work primarily in Visual Studio. If you're used to CMT, definitely check out the Builds with SCons CMT-SCons
 .Comparison chart

Python

If you don't already have it (python external libraries under GLAST_EXT don't count) install python from the . Version should be at least 2.5; 2.6 official site
or 2.7 preferred. Do attempt to use a version in the 3.x series.not

SCons

You'll need 1.3.0 or newer; at least 2.1.0 is preferred. You can get it from the .official SCons site

GlastRelease

Installers

The simplest way to get the source for a particular tag and the externals it uses is with one or the other of the installers. Because of a recently-fixed bug,
older tags are not available this way, but tags made on or after May 29th should be. Here are links for the and installers. gui command-line

Note: the "source" zip file for Windows tags is actually source plus all built and installed products. This is not the intent and may be fixed at a later
date. The only downside is that the zip file is much larger than it needs to be. If you download and unzip such a file, in the "Building Preliminary Targets"
step below you'll only need to build StudioFiles; setup and to_install will already be built.

If you need access to other tags or if you want to check out code which has not yet been tagged you will need to resort to the techniques described below.

Another option is to use the Installer just for externals (uncheck the box for the GlastRelease code itself) and check out the source with a cvs command as
described below in the section .GR source

GR source

First determine what specific tag you want. (As of November 26 the most recent tag, dated October 21, is GlastRelease-20-06-04. A new one is expected
soon.) It can be checked out of CVS

cvs co -d GR-20-08-10 -r GlastRelease-20-08-10 GlastRelease-scons

(note the option above is not necessary. Including will cause the top-level directory of the check-out code to be called GR-20-06-04. By -d -d GR-20-06-04
default it would be named after the module being checked out; i.e., GlastRelease-scons)

or you can copy a zip file of source from SLAC nfs. In this case, the path for the debug build is

/nfs/farm/g/glast/u52/ReleaseManagerBuild/Windows-i386-32bit-vc90/Debug/GlastRelease/GlastRelease-20-06-04-source.zip

Replace "source" above with "devel" to get a zip file which includes final build products along with source.

Externals

You will also need a compatible set of externals. For tags not available from the installer, the easiest way to get any that you don't already have is
probably to copy them from the V disk. To find out which externals were used for any particular RM build, go to the compile output for that build. This
output can be found for each build in the or by running the stand-alone program , . The list of externals used RM II web pages RMViewer available via ftp
is near the top, following a string of lines starting "Checking for C++ ..." That output for the debug build of 20-06-04 can be found .here

Building Preliminary Targets

There is a certain amount of bootstrapping which has to take place before you can use Visual Studio. Assuming scons is in your path and GLAST_EXT is
properly defined, from a VS 2008 console window you can cd to the root directory of your GlastRelease source and issue the following command to build
some special targets:

scons --with-GLAST-EXT=%GLAST_EXT% --compile-debug --vc9 forVS

or use , , to do the same thing:GoGui available via ftp

As described in the documentation, use menus to set base path, compile options, location of SCons on your system, and so forth
Select the top line (root directory of your installation of GR) in the pane of the Navigator panelBase installation
At the bottom, in the field labeled "Specify build target", type the target name (, combination of targets , and) forVS setup to_install StudioFiles
and hit Enter or click on the target icon.

http://www.slac.stanford.edu/exp/glast/wb/prod/pages/a_IA_II_instrAnalysis/IA_II_SCons/scons_Introduction.html
http://www.slac.stanford.edu/exp/glast/wb/prod/pages/a_IA_II_instrAnalysis/IA_II_SCons/scons_forDevelopers.html
http://www.slac.stanford.edu/exp/glast/wb/prod/pages/a_IA_II_instrAnalysis/IA_II_SCons/scons_MakingBuilds.html
http://www.slac.stanford.edu/exp/glast/wb/prod/pages/a_IA_II_instrAnalysis/IA_II_SCons/scons_MakingBuilds.html
http://www.slac.stanford.edu/~jrb/transfer/scons_Comparison.html
http://www.slac.stanford.edu/~jrb/transfer/scons_Comparison.html
http://www.python.org/getit/
http://www.scons.org/
http://glast-ground.slac.stanford.edu/SConsInstaller/installer.jnlp
http://www.slac.stanford.edu/exp/glast/wb/prod/pages/a_IA_II_instrAnalysis/commandLineInstaller.html
http://glast-ground.slac.stanford.edu/rm2/RM3.jsp?packageId=2
http://www.slac.stanford.edu/exp/glast/wb/prod/pages/RMViewer/RMViewer_userGuide.html
ftp://ftp-glast.slac.stanford.edu/glast.u05/RMViewer/1.0%20RC3/Windows-i386-32bit/
http://glast-ground.slac.stanford.edu/rm2/buildOutput-II.jsp?buildid=20408&type=compile&status=success&pkgType=GlastRelease-&pkgVersion=20-06-04&pkgOpSys=Windows-i386-32bit-vc90
http://www.slac.stanford.edu/exp/glast/ground/software/notes/GoGui/GoGui-use.shtml
ftp://ftp-glast.slac.stanford.edu/glast.u05/GoGui/1.0.1/Windows-i386-32bit/dynamic-debug/GoGui.exe

For older versions of GR the target does not exist. In that case, you will need to build the three targets , and forVS setup StudioFiles to_install
one at a time.

Building the creates a file, _setup.bat, which defines environment variables needed before starting up Visual Studio or for running executables setup
belonging to GR once they are built.

The target includes project files for all library and executable targets. It also writes a solution file for each package and two special files all.sln StudioFiles
(references all project files) and allGleam.sln (references all library projects plus Gleam and test_Gleam projects).

to_install installs all xml files, job options files, etc. In most situations it also installs headers, but, since this caused considerable grief for VS developers,
SCons will not install headers for recent tags of GR on the Windows platform only. In any case, to be certain to avoid compile- and run-time failures due to
missing source files of one sort or another, it's recommended you start out by installing all source files that need installing from SCons by building the
to_install target . Re-installs after updates can be done from within VS.

Starting up VS

From command line

Bring up a VS 2008 console window. Define the environment variable INST_DIR to point to the top-level folder of your installation, the one containing the
SConstruct file. Run the setup file created above. Relative to the top-level folder of your source installation, it will have a path more or less like
bin\Windows-i386-32bit-vc90-Debug\ _setup.bat

Next cd into the folder containing the project and solution files. Relative to the top-level folder this will be something like studio\Windows-i386-32bit-vc90-
Debug

Then start up VS on one of the solution files, e.g.

devenv allGleam.sln

From GoGui

Alternatively you can start up a solution file from within GoGui. Select the root directory. Then, in the bottom navigator pane, navigate to the subdirectory
with a name like . (If you don't see such a directory, you might have to refresh the listing first by clicking the studio\Window-i386-32bit-vc90-Debug
refresh icon. You can start up VS by right-clicking on any solution file and selecting the Studio menu item.

Known issues

Installing headers

VS project files do not have the same level of granularity that SCons does in handling the installation of header files. SCons parses C++ source to
compute dependencies on headers and will automatically install any header needed to compile an object it is trying to build. As far as I can tell, VS project
files do not natively support the idea of installing files. The approach I originally took was to generate a .bat file for each package which installs files
(headers, job options, xml, etc.) belonging to that package, then invoke it in a project file belonging to that package. Usually it's the same project file that
builds the package's library. If the package doesn't build a library, there is an extra VS project file which does nothing but invoke the .bat file. However,
there is no easy way to determine dependencies and build order among these project files.

I that most scenarios of modifying headers from within Studio will be handled correctly, but it is somewhat awkward. The intent was that developers think
modify the original (within the package) copy of the header,job options file or what have you, and the build process should install it.

Installing headers Take 2

The original scheme was sufficiently troublesome to Windows developers, in particular Windows GlastRelease developers, that newer versions of GR don't
install headers. Other source files (xml, job options, etc.) are still installed. "Newer versions" means anything with SConsFiles tag SConsFiles-01-00-00 or
greater; for working supersede need SConsFiles-01-10-00 or greater. The tag of SConsFiles belonging to a particular GR can be verified by looking at the
first few lines of the top-level file SConstruct.

	Recipe for GlastRelease and VS 2008

