
Reprocessing Task Structure
Reprocessing task structure
1/11/2012 Under Construction

TASK FUNCTION

Task Overview

Each Fermi data run corresponds to a single top-level stream of this task.

The generic task consists of seven job steps. One top-level stream reprocesses one Fermi run. Because each Fermi run typically contains millions of
events, the reprocessing is spread across multiple CPUs by breaking the run into fixed-length 'clumps'. Each clump is reprocessed independently; the
primary output (typically ROOT files) is finally merged. Secondary data products (e.g., FITS files) are created after the merging of ROOT files.

The task structure is fairly simple including various short bookkeeping steps, and two 'heavy lifters': processClump.py runs Gleam; 'mergeClumps.py'
merges run fragments and produces any final data products. Depending on the task configuration, one or both of these two job steps may be substantial
(xlong queue) or trivial (short queue).

To date, reprocessing instances have been accomplished using two independent consecutive pipeline tasks. The first task runs Gleam and produces all
desired ROOT files. The second task reads in MERIT files and produces all desired FITS files. This task separation is done to better match the needs of a
reprocessing life-cycle most efficiently: task code development, data validation, IRF development, and resource management while the tasks are running.

top-level stream sub-
stream

type primary function

setupRun py
discover run number, input files; calculate # parallel substreams

createClumps jy
create substreams

 processClump py
Gleam reprocessing of run fragment (clump)

 clumpDone jy
no-op

setupMerge jy
collect data from Pipeline II DB and write to file

mergeClumps py
merge output from processClump;
create post-merge data products

runDone jy
register datasets; update processing history DB

Task Details

setupRun.py

read & parse 'runList' file
identify run# and input files for this stream
calculate #clumps (substreams in subtask)
create env-vars for subtask

createClumps.jy

read env-vars
create task-level pipeline-vars for subTask
create subStreams (with pipeline-var list)

[subtask] processClump.py (all parallel analysis processing)

unpack pipeline-vars (as env-vars)
define skipEvents/lastEvent for Gleam
[limit # events processed]
infile staging [disabled]
infile slicing (skimmer) [disabled]
infile env-vars for Gleam
construct output filenames

output file staging
set output file env-vars for Gleam
prepare .rootrc
select and stage-in FT2 file

(Gleam setup)
select jobOptions file and customize
Run Gleam

(SVAC setup)
Run svac [disabled]
Run makeFT1 [disabled]
Finalize staging
create new subTask-level pipeline-vars with clump output info

[subtask] clumpDone.jy

(nothing!)

setupMerge.jy

unpack task-level pipeline variables
create new task-level pipeline vars from subTask vars
create two pipeline files: pipelineVarList.txt and clumpFileList.txt

mergeClumps.py

open and read the two pipeline files, store in dicts
stage in FT2 file

(merge files)
create tool-specific lists of files to be merged
loop over all file types to be merged
construct new output file name (with proper version)
if # files to be merged == 1, just use 'cp'

skimmer merge
stage-out output file
run skimmer

FT1 merge
stage-out output file
run fmerge

HADD merge (histograms)
stage-out output file
run hadd

(post-merge data product generation)
stage-in input MERIT file, if necessary

FT1
generate new output file name (wth proper version)
stage-out output file
runMakeFT1()

ELECTRONFT1
generate new output file name (wth proper version)
stage-out output file
runMakeFT1()

LS1
generate new output file name (wth proper version)
stage-out output file
runMakeLS1()

FILTEREDMERIT
generate new output file name (wth proper version)
stage-out output file
run skimmer

ELECTRONMERIT
generate new output file name (wth proper version)
stage-out output file
run skimmer
Finalize staging
Produce list of files for dataCat registration

runDone.jy

Unpack task-level pipeline vars
Register (merged) output file in dataCat
Make entry in HISTORYRUNS DB table

CODE

Directories

Primary script and configuration directories

/nfs/farm/g/glast/u38/Reprocessing-tasks/P201-ROOT
/config

task-specific scripts and config files for ROOT file reprocessing

/nfs/farm/g/glast/u38/Reprocessing-tasks/P201-FITS/config task-specific scripts and config files for FITS file reprocessing

/nfs/farm/g/glast/u38/Reprocessing-tasks/commonTools task-independent scripts and config files available to all tasks

Other code dependencies

/afs/slac/g/glast/ground/PipelineConfig/GPLtools/GPLtools-02-00-
00/

common pipeline tools

/afs/slac/g/glast/ground/PipelineConfig/python/@sys/bin/python Fermi installation of python

/nfs/farm/g/glast/u52 Location of SCons GlastRelease
builds

/nfs/farm/g/glast/u35 Location of SCons ScienceTools
builds

/afs/slac/g/ki/software KIPAC Ftools installation

/afs/slac/g/glast/applications General Fermi tools (incl. xroot

/afs/slac/g/glast/ground/GLAST_EXT Fermi (GLAST) externals

commonTools

/nfs/farm/g/glast/u38/Reprocess-tasks/commonTools/00-01-00

findRunsRepro.
py*

 search dataCatalog (used to generate run list)

checkRunList.py* check/summarize run list(s)

envCtl.py* class for env-var management

 envCtl constructor

 genEnv() generate target environment

 diffEnv() determine diffs between original and traget envs

 setEnv() set target environment

 restoreInitEnv() restore initial environment

 storeEnv() store environment to disk (pickle)

 loadEnv() load environment from disk (pickle)

 dumpEnv() print all environment variables

svs.py* SCons variant string generator

pickleEnv.py* wrapper for python setup scripts (pickles resultant env)

pickleEnv.sh* wrapper for bash setup scripts (pickles resultant env)

repTools.py miscellaneous functions available to all repro tasks

 makeXrootFilename() generate an repro file Xroot filename

 makeXrootScratchFilename() generate a scratch filename (for clump files)

 getKey() get info from FITS file

 findFt2() query dataCat for appropriate FT2 file

 getFile()

 getCurrentVersion() determine current version of specified file

 fileOpen()

 runMakeFT1() run makeFT1 and, optionally, gtdiffrsp and gtmktime

 rcCheck() return code management (check if any rc in list != 0)

 rcGood() check if rc in list and == 0

 rcDump() print all rc's in list

 modeDump() dump 'mode' dictionary

ft1skim.py* wrapper to run ft1skimmer (TonyJ) (OBSOLETE?)

runFT1skim.sh wrapper to ft1skim.py (OBSOLETE?)

runMakeFT1.sh* wrapper to run makeft1/gtdiffrsp/gtmktime

runSvac.sh* wrapper to run SVAC tuple generation code (OBSOLETE)

runWrapper.sh* (old) wrapper to run Gleam (CMT version)

setupFtools.sh* create environment to run FTools

setupGR.sh* create environment to run Gleam (GR)

setupOracle.sh* create environment for Oracle

setupSkimmer.py create environment to run TSkim

setupST.sh* create environment to run ScienceTools

setupXroot.sh* create environment to run xroot tools

trickle.py class to control rate of task stream creation

.xrayrc FTools setup config file

task-specific code

Task preparation

taskConfig.xml task definition

genRunFile.csh* generate list of input files for reprocessing

Pipeline code

envSetup.sh* set up environment to run GR/ST/FT/etc (called by pipeline)

config.py task configuration (imported by all .py)

setupRun.py* setup for reprocessing a single run

createClumps.jy create subprocess for processing a "clump" (part of a run)

processClump.py* process a clump of data

clumpDone.jy cleanup after clump processing

setupMerge.jy setup for merging clumps

mergeClumps.py* merge all clumps for single run

runFT1skim.sh* skim FT1 events

runDone.jy final bookkeeping after run reprocessed (dataCat and runHistory)

commonTools@ link to commonTools

Input data to pipeline code

doRecon.txt Gleam job options

fullList.txt List of reprocessing input data files

removeMeritColumns.txt List of columns to remove from MERIT files

runFile.txt@ Sym link to fullList.txt

Pipeline control code

trickleStream.py* task-specific config for trickle.py

Running environment

Setting up a proper running environment for the many varied applications and utilities needed to perform data reprocessing is an issue to be treated with
care. Therefore a short discussion of this topic will be given.

A given release of Fermi code is built for a finite number of operating systems, compiler versions, hardware address size, compiler options (e.g., optimized
or debug), build system (CMT or SCons). Over time, the standard location for these builds at SLAC can move about. Closely related but independent of
this, SLAC and SCCS supports slowly evolving set of hardware and software architectures (RHEL5-32, RHEL5-64, RHEL6-64, etc.) and compiler versions
(gcc). A system was developed to automate the matching of the best combination of hardware with Fermi software, e.g., there is no available RHEL6-64
build, but a RHEL4-32 build of GlastRelease will run on a RHEL5- or RHEL6- machine.

The first step is setting up an environment to run a particular application or utility, e.g., GlastRelease, ScienceTools, Ftools, Xroot, Oracle, etc. This
typically involves defining one or more environment variables and then running a shell script prior to running the compiled executable (in '/exe'). In the case
of an SCons build, one can optionally skip the explicit running of the setup shell script by invoking the '/bin' version of the application - which is really a
shell script wrapper which then calls the compiled executable. One problem with this implicit shell script wrapper is that one cannot then override selected
variables which are set by it. At this point in time, all setup scripts do nothing more than define environment variables.

The approach taken here is to run a setup script in a sub-process, capture all environment variables and store them, along with the original set. When a
particular application is invoked, the stored environment variables are defined, the application executed, then the environment restored to its previous
condition. In this way, one can easily run, say, Gleam, ScienceTools, Ftools and anything requiring a specific (and, possibly conflicting) setup within the
same python script

The current system works only for SCons release builds.

Example:

One must first create the appropriate scripts that setup the desired environment. By convention, all used for reprocessing are named: setup<package>.{sh,
py}, e.g., setupGR.sh.

import svs
import envCtl

myGR = envCtl.envCtl(envScript='setupGR.sh',name="GR set") ## Create env-var management object
myGR.genEnv() ## Generate environment for Gleam

...

myGR.setEnv() ## Establish Gleam environment
gleamrc = os.system(GleamCmd) ## Run Gleam
myGR.restoreInitEnv() ## Restore initial environment

	Reprocessing Task Structure

