Python Scripting

Environment Setup

Editing Configurations - the 'pycdb’ module
Controlling the DAQ - the 'pydaq' module
Monitoring the Data - the 'pyami' module

Environment Setup

Three C++ library extensions to Python have been written {"pycdb”, "pydaq", "pyami"}

which allow scripting of interactions with the data acquisition and online monitoring system. The necessary environment changes to pickup these

extensions are:

#!/bin/csh

setenv DAQREL /reg/g/pcds/dist/pds/7.0.2/build (the |latest rel ease goes here)
set env PYTHONPATH ${ PYTHONPATH} : ${ DAQREL}/ pdsapp/ | i b/ x86_64-1 i nux: ${ DAQREL}/ ami /| i b/ x86_64-1i nux
setenv LD LI BRARY_PATH ${LD_LI BRARY_PATH} : ${ DAQREL}/ pdsdat a/ | i b/ x86_64- 1 i nux: ${ DAQREL}/ pdsal g/ | i b/ x86_64-

I'i nux: ${ DAQREL}/ pdsapp/ | i b/ x86_64-1i nux: ${ DAQREL}/ ani /| i b/ x86_64-

I'i nux: ${ DAQREL}/ bui | d/ qt/1i b/ x86_64-1i nux

Editing Configurations - the ‘pycdb' module

An example script for editing DAQ configurations follows:

i mport pycdb

def upgradel pi nhConfig(cfg):

dat = cfg.get() # retrieve the contents in a Python
dat['trigPsDelay'] =0 # reset the presanpling del ay
cfg.set(dat) # store the change
if __name__ =="__main__":
db = pycdb. Db('/reg/ g/ pcds/ di st/ pds/ xpp/ configdb/current') #
xtclist = db. get(alias="BEAM, typei d=0x20017) #
runs (0x2 = version, 0x0017 = | Pl MB)
for x in xtclist: #
upgr adel pi mhConfi g(x) #
db. set (x, " BEAM') #
db. commi t () #

The complete pycdb module programmer's description:

I'i nux: ${ DAQREL}/ bui | d/ pds/ | i b/ x86_64-

di ctionary object

set the target database
retrieve all 1PIMB configurations for BEAM

| oop over the retrieved configurations

nmodi fy the configuration

wite the configuration back to the database
updat e the database with the changes

--- pycdb nodule ---
cl ass pycdb. Db(pat h)
Initializes access to the configuration database residing at 'path'.
Menber s:

get (key=<Integer> or alias=<string>,
src=<Integer> or |evel =<Integer>, typeid=<Integer>) or
get (key=<Integer> or alias=<string>,
t ypei d=<I nt eger >)
Returns a tuple of configuration datum which satisfies the
search criteria. The search criteria is conposed of either
a particul ar database key nunber (integer) or alias nane
(for exanple, "BEAM'), an integer detector id '"src' or |evel
(for exanple, O=control), and an integer typeid
(for exanple, 0x00050008 = Evr configuration version 5).
The Python type of each returned object is specific to the
datum returned { pycdb. D odeFexConfig, pycdb.CspadConfig, ... }.

set (datum alias)
Inserts the configuration 'datunm into the database for the
gl obal entry 'alias' (for exanple, "BEAM).

commi t ()
Updates all current run keys with the data inserted via calls to

set
cl one(key)
Returns a new dat abase key created as a copy of the existing key 'key'.

The returned key is suitable for modifying via calls to 'substitute'.

substitute(key, datum
Insert the configuration 'datum only for the given database 'key'.

Controlling the DAQ - the ‘pydag’ module

An example script for controlling the DAQ through a scan follows:

i nport pydaq

if __name__ =="__nmain__":
host = ' xpp-daq’ # host nane running the DAQ control process
platform= 0 # DAQ identifier
cycles = 100 # nunber of iterations in the scan
nevents = 105 # nunber of events at each iteration
do_record = Fal se # option to record the data
daq = pydaq. Control (host, platform # Connect to the DAQ control process
daqg. confi gure(record=do_record, # Configure the DAQwW th the scan information,

H*

event s=nevents, nunber of events per scan cycle,
control s=[(" EXAMPLEPV1', 0), (' EXAMPLEPV2' ,0)]) # list of scan variables and current val ues

print "Configured."

#
Wait for the user to declare 'ready’
Setting up nonitoring displays for exanple
#
ready = raw_input('--Ht Enter when Ready-->')
for cycle in range(options.cycles): # Loop over the scan cycles
print "Cycle ", cycle
pvl = cycle # Change the scan variable
pv2 = 100-cycl e # For exanple, nove a notor with EPICS.
daq. begi n(control s=[(' EXAMPLEPV1' , pv1), # Acquire the events with the
(" EXAMPLEPV2' | pv2)]) # list of scan variables and their val ues.
enabl e the EVR sequence, if necessary
daq. end() # Wait for the events to conplete
di sabl e the EVR sequence, if necessary
if (do_record==True):
print 'Recorded expt % run %' % (daq. experinent(), daq.runnunber())
#
Wit for the user to declare 'done'
Saving nonitoring displays for exanple
#

ready = raw_input('--Ht Enter when Done-->')

The previous script simply reports the change in the scan variables to the DAQ and acquires the indicated number of events for each scan point. A more
complete implementation would include code that controls the motors/devices that the scan variables represent (through 'pyca’, for

example). Alternatively, the scan may be designed to vary the DAQ configuration (a trigger delay scan, for example); this can be accomplished in
conjunction with the 'pycdb’ module. In addition, the implementation may wish to retrieve the accumulated data at each step for scripted processing or
plotting; this is described in the next section ('pyami' module).

The complete pydag module programmer's description:
--- pydaq nodule ---
cl ass pydaq. Control (host, platfornr0)

Argunent s:
' host' : host nane or IP address (dotted-string notation or integer)
‘platform : DAQ pl atform nunber (subdivision of readout hardware)

Functi on:
Initializes the interface for controlling the data acquisition systemrenotely.
Creates a connection with the local control and queries the configuration
dat abase and current key in use.

Menber s:

Control . dbpat h()
Returns path to configuration database

Control . dbkey()
Returns current configuration key (integer) in use

Control . dbalias()
Returns current configuration alias (string) in use

Control .partition()
Returns a list of dictionary objects describing all nodes in the DAQ readout.

Control . configure(record=<Bool >,
key=<I nt eger >,
events=<Integer> or |1t_events=<Integer> or |3t_events=<Integer> or duration=[seconds,
nanoseconds],
control s=[(nane, val ue)],
noni tors=[(nane, | o_range, hi _range)],
partition=[()])
Configures control to use database key (default to current key) either:
(1) collecting a fixed nunber of events on each cycle (when events=<|nteger>
or | 1t_events=<Integer> is specified) or
(2) collecting events until a fixed nunber of events have been accepted by
the level 3 filter (when |3t_events=<Integer>) or
(2) collecting events for a fixed duration (when duration=[seconds, nanoseconds]
is specified).
The list of variables controlled (optional) in the scan and
the list of variables to be nobnitored (optional) during acquisition
are specified.
The option to record can also be set. |If it is omtted, then the value from
the local control is used.
A nodified list of objects fromthe Control.partition() call nay be given for the partition argunent to
sel ect only a subset of detectors for readout or recording by changing the values of the 'Readout' or
' Record'
dictionary entries. |If this argunent is onmtted, the partition is readout and recorded as
initially configured.

Control . begi n(events=<Integer> or |1t_events=<Integer> or |3t_events=<lnteger> or duration=[seconds,
nanoseconds],
control s=[(nane, val ue)],)
nmoni tors=[(nane, | o_range, hi _range)])
Begi ns acquisition for the specified settings of control variables (if specified).
Actual control of these variables is the responsibility of the renote application.
Moni tor variables (optional) are enforced during acquisition. Omrtted val ues
default to those specified npst recently (or in the 'configure' nethod).

Control . end()
Waits for the end of acquisition cycle signalled fromthe |ocal host control.

Control .stop()
Signals the |local host control to termnate the current acquisition cycle.
This nmethod can be used to prematurely end a scan wi thout closing the connection or
reconfiguring.
The Keyboardl nterrupt (SI G NT) signal handler can be reinplenented to call this nethod, which
will
result in the scan ending and a python Val ueError exception being raised.

Control . event nun()
Returns the nunber of events acquired in the current acquisition run.

Control . experinment ()
Ret urns experinent nunber of run, if recorded.
Only valid after acquisition is conplete.

Control . runnunber ()

Returns run nunber, if recorded.
Only valid after acquisition is conplete.

Monitoring the Data - the '‘pyami' module

An example script (not very useful) for retrieving data accumulated by the monitoring follows:

i nport pyam

class Anmi Scal ar (pyami . Entry): # subclass for readability
def __init__(self,nane):
pyam . Entry. __init__(self,nanme)
class Ami Acqiris(pyan .Entry): # subcl ass for readability
def __init__(self,detid,channel):

pyam .Entry. __init__(self,detid, channel)

eth_lo = 0x7f000001

eth_nt = Oxefff2604

Cxi Acq = 0x18000200 # detector identifier for Cxi Endstation Acqiris readout

if _panme__ =="_main_":
pyamni . connect (eth_nt, eth_|l o, eth_| 0) # exanpl e paraneters for a nonitoring playback job
X = Am Scal ar (" ProcTi ne") # accunul ate (events,nmean,rns) for 'ProcTime' scalar variable
X. get () # return accunul ated data
X = Am Acqi ri s(Cxi Acq, 1) # accumul ate averaged waveformfor Cxi Acqiris readout nodul e
X. get () # return accunul at ed wavef orm

A "complete" scripted example for scanning, acquiring data, and plotting the data is scan_plot.py .

The pyami module programmer's description:

-- pyam nodule --

connect (Server_Group, CDS interface, FEZ interface)
Connects the nodule to the group of nonitoring servers.
The input paranmeters are specific to the hutch.
If the last two paranmeters are omtted, they will be |learned fromthe
avai | abl e network interfaces on the host.
This nust be called before any of the follow ng class nethods.

connect (PROXY_i p_address, CDS_interface)
Connects the nodule to the group of monitoring servers known by the PROXY.

di scovery()
Returns a list of detectors available for nonitoring.

l'ist_env()
Returns a list of scalar variables available for nonitoring.

set _|3t(filter_string)
Sets the current DAQ L3T filter to <filter_string> See "event filter" bel ow

clear_|13t()
Renoves the DAQ L3T filter.

cl ass pyam . Entry(nane) or
cl ass pyam . Entry(nane, ' Scal ar')
Monitors data fromthe scalar variable 'name'. A dictionary of
(type='Scalar', tinme=<last event tine in seconds since the Epoch>,
entri es=<nunber of events accunul ated>, nean=<val ue>, rns=<val ue>) is accunul at ed.

cl ass pyam . Entry(nane, ' THLF' , nbi ns, x| o, xhi)

Monitors data fromthe scalar variable '"nane'. A dictionary of
(type=' THLF', tinme=<last event tine in seconds since the Epoch>,
uf | on=<nunber of underflows>, oflow=<nunber of overflows>, data=(n_binO, n_binl, ...)) is accunul ated.

cl ass pyam . Entry(nane, ' Scan', xvari abl e, nbi ns)

Monitors data fromthe scalar variable "nane'. A dictionary of

(type='Scan', time=<last event tine in seconds since the Epoch>,
nbi ns=<val ue>, current=<index of npbst recent entry>, xbins=(x0, x1, ...), yentries=(n0O, n1, ...),
ysum=(y0, y1, ...), y2sun¥(y2_0, y2_1, ...)) is accunul ated; where

‘current' is the bin with the nbost recent entry, 'xbins' is a list of unique x-variable val ues,

https://confluence.slac.stanford.edu/download/attachments/102862558/scan_plot.py?version=2&modificationDate=1311266364000&api=v2

‘yentries' is a list of the nunber of summed entries with that x-variable val ue,

'sum is a list of the sumof y-variables values in each bin, "y2suml is a list of the sum
of y-variable values squared in each bin. The lists are of length "nbins' with only the nost
recent entries retained.

class pyam .Entry(det_identifier) or
cl ass pyam . Entry(det_identifier,channel)
Monitors the data fromthe detector associated with 'det_identifier' and
‘channel'. A dictionary of data averaged over events is accumul ated. The
di mensi ons and binning of the data are deternmined fromthe detector.
The dictionary format is
(type=' Waveform , tine=<last event time in seconds since the Epoch>
entries=events, xlow, xhigh, data=(y0, y1, ...)) or
(type='Image', tinme=<last event time in seconds since the Epoch>,
entries=events, offset=dark_|evel, ppxbin, ppybin,
dat a=((rowocol O, row0col 1, ...), (rowlcol O, rowlcol 1,...))) or
(type='ImageArray', time=<last event tine in seconds since the Epoch>,
entries=events, offset=dark_|evel, ppxbin, ppybin,
data=(((rowdcol O,row0col 1,...), (rowlcol O, rowlcol 1,
((rowocol 0, row0col 1, ...), (rowlcol 0, rowlcol 1,

))

-..))_0,
So2)) L
"event filter"

Each of the above nethods al so takes an optional final string argument that
defines an event filter. The string nust take the form

_lo_val ue_<_scal ar_nane_<_hi _val ue_ or
(_expril_)&(_expr2_) or
(_exprl_)| (_expr2_)

where _exprl_ and _expr2_ also take one of the forns.
Menbers:

Entry. get ()
Returns the data accumul ated since the object was created.
Entry. clear ()
Resets the data accumul ati on.
Entry. pstart()
Start continuous node accurul ation ("push" node).
Entry. pstop()
St op continuous node accumnul ati on.

Entry. pget ()
Return conti nuous node dat a.

"Push" nopde description:

The event data is "pushed" to the python nodule's application by the nonitoring servers once the Entry.
pstart() command is given. The Entry.pget() call sinply waits for the data to arrive, if necessary, and
returns it to the caller. The Entry.pstop() conmand instructs the servers to cease sending the data. Note
that this node can easily consunme considerabl e network bandwi dth on the | ocal machine.

class pyam .EntryList([list of arguments that satisfy pyani.Entry above])
Defines a list of objects to access using the sane resources as one pyam .Entry object. The list of
obj ects is accessed synchronously, so each object's accunulation of events will be the sane.

Menbers:

EntryList.get()
Returns a list of the data accunul ated since the object was created.
EntryList.clear()
Resets the data accumul ati on.
EntryList.pstart()
Start continuous nbde accunul ation ("push" node).
EntryLi st. pstop()
Stop continuous node accurul ation.
EntryLi st. pget ()
Return a list of the continuous node data.

	Python Scripting

