Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Abstract: Today's state-of-the-art machine learning models require massive labeled training sets--which usually do not exist for real-world applications. Instead, I’ll discuss a newly proposed machine learning paradigm--data programming--and a system built around it, Snorkel, in which the developer focuses on writing a set of labeling functions, which are just scripts that programmatically label data. The resulting labels are noisy, but we model this as a generative process—learning, essentially, which labeling functions are more accurate than others—and then use this to train an end discriminative model (for example, a deep neural network in TensorFlow).  Given certain conditions, we show that this method has the same asymptotic scaling with respect to generalization error as directly-supervised approaches. Empirically, we find that by modeling a noisy training set creation process in this way, we can take potentially low-quality labeling functions from the user, and use these to train high-quality end models. We see this as providing a general framework for many weak supervision techniques, and at a higher level, as defining a new programming model for weakly-supervised machine learning systems.


Models and Algorithms for Solving Sequential Decision Problems under Uncertainty

Date: Mar. 21, 2pm

Speaker: Mykel Kochenderfer

Location: Sycamore Conference Room (040-195)

Abstract: Many important problems involve decision making under uncertainty, including aircraft collision avoidance, wildfire management, and disaster response. When designing automated decision support systems, it is important to account for the various sources of uncertainty when making or recommending decisions. Accounting for these sources of uncertainty and carefully balancing the multiple objectives of the system can be very challenging. One way to model such problems is as a partially observable Markov decision process (POMDP). Recent advances in algorithms, memory capacity, and processing power, have allowed us to solve POMDPs for real-world problems. This talk will discuss models for sequential decision making and algorithms for solving them.

 


Past Seminars

...

ProxImaL: Efficient Image Optimization using Proximal Algorithms

...