Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

...

An example for Track3P multipacting computation on a single field level. Field gradient: 97e+06

Code Block
TotalTime: 20  //total running time in RF cycles, default: 20 RF cycle

// If you don't give this block, it will use default value
ParticlesTrajectories:  // record particles' trajectory, only for running single
                        //field case
{   ParticleFile: p       // file name
    Skip: 10              // write file each 10 steps
    Start: 10             // start time step for writing file
    Stop: 100000          // stop time step for writing file
}


FieldScales:
{
  Type: FieldGradient // Field level(V Three types, FieldGradient (v/m); / PortInputPortPower power(W)
FieldScales:
{
; StoreEnergy
  ScanToken: 0 // 1: scan, 0: no scan
  Scale: 97e+06  //field scale for particle trajectory
}

//Normalize field, only for closed waveguide case
NormalizedField:
{
  StartPoint: 0 0 0.0486225 //start point of the line for field integral calculation
  EndPoint: 0 0 0.2061 //end point of the line for field integral calculation
}

// Primary particles emission

Emitter:
{
  x0: -0.001
  x1: 0.001
  y0: 0.09
  y1: 0.12
  z0: -0.068
  z1: 0.068
  BoundaryID: 6
}
// Boundary Material
//Type Boundary type
//1 / Reflector
//2 / Absorber
//3 / Secondary
//4 / Primary
//5 / SymmetryPlane

Material:{
  Type: Primary
  BoundarySurfaceID:  6  //Boundary surface ID
}

Material:{
  Type: Secondary
  BoundarySurfaceID:  6  //Boundary surface ID
}

Material:{
  Type: Absorber
  BoundarySurfaceID:  3 4 7 8  //Boundary surface ID
}
Material:{
  Type: SymmetryPlane
  BoundarySurfaceID:  1 2  //Boundary surface ID
}

OutputImpacts: on
// Field information container
Domain:
{
  PostprocessFile: ./vector1/postprocess.in
  Bins: 250
}

Postprocess: // multipacting postprocess
{
  Toggle: on // on: postprocess, off: no postprocess
  ResonantParticles: // postprocess for resonant particles
  {
    Token: on // on: analysis resonant particles, no: no analysis is done for resonant particles
  }
}

A complete example with impedance boundary condition

An example of multipacting simulation on a field level scan case

Code Block

// Field level(V/m) / Port power(W)
FieldScales:
{
  Type: FieldGradient
  ScanToken: 1 // 1: scan, 0: no scan
  Minimum: 1e+06
  Maximum: 100e+06
}

//Normalize field, only for closed waveguide case
NormalizedField:
{
  StartPoint: 0 0 0.0486225 //start point of the line for field integral calculation
  EndPoint: 0 0 0.2061 //end point of the line for field integral calculation
}

// Primary particles emission

Emitter:
{
  x0: -0.001
  x1: 0.001
  y0: 0.09
  y1: 0.12
  z0: -0.068
  z1: 0.068
  BoundaryID: 6
}

Material:{
  Type: Primary
  BoundarySurfaceID:  6  //Boundary surface ID
}

Material:{
  Type: Secondary
  BoundarySurfaceID:  6  //Boundary surface ID
}

Material:{
  Type: Absorber
  BoundarySurfaceID:  3 4 7 8  //Boundary surface ID
}
Material:{
  Type: SymmetryPlane
  BoundarySurfaceID:  1 2  //Boundary surface ID
}

OutputImpacts: on
// Field information container
Domain:
{
  PostprocessFile: ./vector1/postprocess.in
  Bins: 360
}

Postprocess: // multipacting postprocess
{
  Toggle: on // on: postprocess, off: no postprocess
  ResonantParticles: // postprocess for resonant particles
  {
    Token: on // on: analysis resonant particles, no: no analysis is done for resonant particles
  }
}

An example of tracking particles simulation with only one impact information

Code Block

TotalTime: 3  //total running time in RF cycles, default: 20 RF cycle

// Field level(V/m) / Port power(W)
FieldScales:
{
  Type: FieldGradient
  ScanToken: 0 // 1: scan, 0: no scan
  Scale: 97e+06  //field scale for particle trajectory
}

//Normalize field, only for closed waveguide case
NormalizedField:
{
  StartPoint: 0 0 0.0486225 //start point of the line for field integral calculation
  EndPoint: 0 0 0.2061 //end point of the line for field integral calculation
}

// Primary particles emission

Emitter:
{
  t0: 0 //time(in RF cycle) for start emission
  t1: 1 //time(in RF cycle) for end emission
  Type: 4
  Position: 4.0388e-4 4.63728e-3 6.49586e-2
  BoundaryID: 6
}

Material:{
  Type: Primary
  BoundarySurfaceID:  6  //Boundary surface ID
}

Material:{
  Type: Secondary
  BoundarySurfaceID:  6  //Boundary surface ID
}

Material:{
  Type: Absorber
  BoundarySurfaceID:  3 4 7 8  //Boundary surface ID
}
Material:{
  Type: SymmetryPlane
  BoundarySurfaceID:  1 2  //Boundary surface ID
}


OutputImpacts: on
// Field information container
Domain:
{
  dt: 0.5
  PostprocessFile: ./vector1/postprocess.in
  MaxImpacts: 1
  Bins: 300
}

Postprocess: // multipacting postprocess
{
  Toggle: on // on: postprocess, off: no postprocess
  ResonantParticles: // postprocess for resonant particles
  {
    Token: off // on: analysis resonant particles, no: no analysis is done for resonant particles
    InitialImpacts: 4 // particles with impacts number greater than initial impacts are considered, default is 4
    EnergyRange: 10 10000 //particles with impact energy fall in this region is considered, default value: >10ev, <10000ev
  }
  DKSingleEmit:
  {
   Token: on
   FileName: DKSingleEmit
   SymmetryBoundaryIDs: 1 2
  }
}

An example for Track3P dark current simulation for 90 degree square bend structure

Code Block

TotalTime: 20

ParticlesTrajectories:
{  ParticleFile: p
     Skip: 10
    // Start: 500
    // Stop:  2500
} 

FieldScales:
{
  Type: InputPortPower
  ScanToken: 1 // 1: scan, 0: no scan
  Minimum: 72e+06
  Maximum: 72e+06
  Interval: 1e+06
  Scale: 213e+06  //field scale for particle trajectory
}

Emitter:
{
  t0: 0
  t1: 20.0
  Type: 7   //dark current type (field emission)
  BoundaryID: 6
  N: 3
Code Block

ModelInfo: {

  File: cell.ncdf

  BoundaryCondition: {
    Magnetic: 1 3 4
    Impedance: 6
    Waveguide: 7 8
  }

  SurfaceMaterial: {
    ReferenceNumber: 6
    Sigma: 5.8e7
  }

}

Port : {
        Reference number: 7
        Origin:     0.0, 0.04105, 0.0
        XDirection: 1.0, 0.0, 0.0
        YDirection: 0.0, 0.0, -1.0
        ESolver: {
                Type: Analytic
                Mode: {
                        Waveguide type: Rectangular
                        Mode type: TE, 1, 0
                        A: 0.028499
                        B: 0.00895
                }
        }
}

Port : {
        Reference number: 8
        Origin:     0.0, -0.04105, 0.0
        XDirection: 1.0, 0.0, 0.0
        YDirection: 0.0, 0.0, 1.0
        ESolver:  {
                Type: Analytic
                Mode: {
                        Waveguide type: Rectangular
                        Mode type: TE, 1, 0
                        A: 0.028499
                 // number of unit particles in the Bmacroparticle
  M: 0.00895
9.108e-31            // real mass of a unit }particle
  Q: -1.602e-19
  d: .000001
  WorkFunction: }
}

FiniteElement4.4
  Beta: {120
  OrderSuppressionFactor: 2.0
  CurvedSurfaces//WriteToFile: on1
}

FrequencyScan: {
 Start: 9.33e+9
 End:   9.48e+9
 Interval: 0.01e+9
}

PostProcess: {
  Toggle: off
  Port Number: 0 //input port
  ModeFile: field
}

VerifyLinearSolver: yes

LinearSolver: {
	Solver:	MUMPS
}

Specify lossy materials

Code Block

 ModelInfo: {
  File: tapereda.ncdf
  BoundaryCondition: {
    Magnetic: 1
    Electric: 2
    Exterior: 6
    Waveguide: 7
  }
  Material : {
    Attribute: 1            //block 1 is vacuum
    Epsilon:   1.0
    Mu:        1.0
  }
  Material : {
    Attribute: 2           //block 2 is lossy (cubit block)
    Epsilon:   3.0
    Mu:        1.0
    EpsilonImag: -5.4  //lossy material
  }
 }

...

 
// x y z directions limitation
  x0:  0.0
  x1:  0.025
  y0:  -0.1
  y1:  0.2
  z0: -0.2
  z1: 0.1
}

OutputImpacts: on   //  write out impact energy infor.


Material: 
{
  Type: 3        //second partticle following SEY curve
  BoundarySurfaceID: 6
 // WriteToFile: 1
  N: 100
  M: 9.108e-31            // real mass of a unit particle
  Model: 2
  N: 3
  Sigma0:  0.0 0.25 0.47 0.66 0.83 0.97 1.08 1.17 1.25 1.3 1.34 1.4 1.37 1.31 1.24 1.19 1.14 1.09 1.06 1.03 1.0  0.97 0.95 0.93 0.91 0.89 0.87 0.85 0.84 0.83 0.81 0.79 0.77 0.75 0.73
  Einit:   0.0 50   100  150  200  250  300  350  400  450 500  700 900  1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300 4500 4900 5300 5700 6100
}