Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migrated to Confluence 4.0

Overview

Wiki MarkupIn this project we study and investigate network anomaly detection algorithms \[1\], \[2\] and \[3\] for Internet Paths. We also develop a _Decision Theoretic Approach_ (DTA) based on our observations regarding the characteristics of the performance-measurement statistics obtained from the [IEPM-BW] project.

To study and compare the algorithms we use the data sets collected by IEPM-BW spanning approximately 2 3 years (i.e. 2006 2005 - 2008). The Internet paths observed were the links between Stanford Linear Accelerator Center (SLAC) and the following sites:

  1. University of Toronto, Canada.
  2. Deutsches Elektronen-Synchrotron, Germany.
  3. Forschungszentrum Karlsruhe, Germany.
  4. San Diego Supercomputing Center (SDSC) USA,
  5. Oak Ridge National Laboratory (ORNL) USA,
  6. European Organization for Nuclear Research (CERN) , Geneva, Switzerland,
  7. Forschungszentrum Karlsruhe (FZK) Germany,
  8. Deutsches Elektronen-Synchrotron (DESY) Germany,
  9. .
  10. San Diego Supercomputing Center, USA.
  11. Switch, Switzerland.
  12. University of Florida, USA.University of Toronto (UTORONTO) Canada and
  13. National Laboratory for Particle and Nuclear Physics (TRIUMF) , Canada.
  14. Oak Ridge National Laboratory, USA.
  15. Budker Institute of Nuclear Physics, Russia.
  16. Daresbury Laboratory, United Kingdom.
  17. California Institute of Technology - CACR, USA.
  18. Istituto Nazionale di Fisica Nucleare, Italy.
  19. Czech NREN Operator, Czech Republic.
  20. Brookhaven National Laboratory, USA.
  21. Argonne National Laboratory, USA.
  22. California Institute of Technology - Ultralight, USA.

The topology of the monitoring framework is shown in figure 1.

Fig. 1: Topology of IEPM as of 07/2008

Fig. 2: Deployment of Selected Sites

...

Image Added

The data sets used in the study may be downloaded from the links listed below. These data sets were collected by the IEPM-BW project and the latest performance statistics may be accessed from here.

 

Raw data

Labeled data

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="a3f36546-b5a7-46f3-ae6e-f7bd455e1036"><ac:plain-text-body><![CDATA[

SDSC

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/SDSC-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/SDSC-pathchirp.xls]]

[[txt

http://www.slac.stanford.edu/~kalim/event-detection/published-data/UTORONTO-pathchirp-labeled-events.txt]]

]]></ac:plain-text-body></ac:structured-macro>

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="71c82f96-ce0c-43f4-bd99-35f7df34a669"><ac:plain-text-body><![CDATA[

CERN

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/CERN-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/CERN-pathchirp.xls]]

[[txt

http://www.slac.stanford.edu/~kalim/event-detection/published-data/CERN-pathchirp-labeled-events.txt]]

]]></ac:plain-text-body></ac:structured-macro>

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="abd2164d-3066-4ea5-b2d5-41e46e34317f"><ac:plain-text-body><![CDATA[

FZK

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/FZK-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/FZK-pathchirp.xls]]

[[txt

http://www.slac.stanford.edu/~kalim/event-detection/published-data/FZK-pathchirp-labeled-events.txt]]

]]></ac:plain-text-body></ac:structured-macro>

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="c1e03fb4-3154-4cec-bf6c-dc091c09ee37"><ac:plain-text-body><![CDATA[

DESY

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/DESY-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/DESY-pathchirp.xls]]

[[txt

http://www.slac.stanford.edu/~kalim/event-detection/published-data/DESY-pathchirp-labeled-events.txt]]

]]></ac:plain-text-body></ac:structured-macro>

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="1128dd79-aa06-48cc-9940-29ad8fef575f"><ac:plain-text-body><![CDATA[

UTORONTO

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/UTORONTO-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/UTORONTO-pathchirp.xls]]

[[txt

http://www.slac.stanford.edu/~kalim/event-detection/published-data/UTORONTO-pathchirp-labeled-events.txt]]

]]></ac:plain-text-body></ac:structured-macro>

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="0413ece2-194f-4022-8b0f-81d9f29bc2cb"><ac:plain-text-body><![CDATA[

TRIUMF

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/TRIUMF-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/TRIUMF-pathchirp.xls]]

[[txt

http://www.slac.stanford.edu/~kalim/event-detection/published-data/TRIUMF-pathchirp-labeled-events.txt]]

]]></ac:plain-text-body></ac:structured-macro>

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="f37f9d27-c146-4963-9539-81266b49e290"><ac:plain-text-body><![CDATA[

ORNL

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/ORNL-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/ORNL-pathchirp.xls]]

[txt]

]]></ac:plain-text-body></ac:structured-macro>

Wiki Markup
Download the complete data archive \[[zip|http://www.slac.stanford.edu/~kalim/event-detection/published-data/published-data.zip] 10 MB\] or \[[7z|http://www.slac.stanford.edu/~kalim/event-detection/published-data/published-data.7z] 8 MB\]

Labeling and Detection Algorithms

Wiki Markup
To perform a fair comparison between \[1\], \[2\], \[3\] and the proposed DTA we devised a labeling algorithm to identify true anomalies in the data sets. This labeled data was then used to determine the accuracy (true-positive rate), corresponding false-positive rate and the detection delay. The labeling algorithm and the decision theoretic approach for real-time anomaly detection are discussed at length in the research paper. (_The paper will be posted soon_.)
\\

Implementations and Parameter Tuning

The source code of the implementations and the tuning of parameters is discussed below. Please consider two important factors while we discuss the parameters tuning: a) We define an anomalous event as one which significantly varies from the normal behaviour of the Internet Path and the perturbation persists for at least three hours. b) The measurements made by IEPM-BW are at least 45 mins apart.

Fig. 2: ROC curves for Plateau (PL),
Adaptive Fault Detection (AFD),
Kalman Filters (KF) and the proposed
Decision Theoretic Approach (DTA)

Image Removed

a) Plateau Algorithm

The Plateau Algorithm takes four input parameters - history buffer length, trigger buffer length, sensitivity and threshold. We define the trigger buffer length to hold observations spanning at least 3 hours (since we define an anomalous event as one that persists for at least 3 hours). Since the measurements made by IEPM are 45 mins apart, we get about 6 observations. We then empirically determine the optimal length of the history buffer to span at least 5 days ~ 240 observations.

We initially define the sensitivity as one (1) and determine the optimal threshold value for each link (i.e. the value with the optimal ratio of true-positives to false positives). As suggested by the authors, this threshold falls between 30%-40%. Finally for the history buffer length, the trigger buffer length and the optimal threshold, we vary the sensitivity to determine the spectrum of the ratio of true-positive rate to false positive rate. Based on the observations we plot the ROC curves as shown in figure 2.

Wiki Markup
The source code of the implementation is available in [C#|http://www.slac.stanford.edu/~kalim/event-detection/published-src/c-plateau-impl.html] \[[cs|http://www.slac.stanford.edu/~kalim/event-detection/published-src/plateau.cs]\] and [perl|http://www.slac.stanford.edu/~kalim/event-detection/published-src/plateau.pl.html] \[[pl|http://www.slac.stanford.edu/~kalim/event-detection/published-src/plateau.pl]\]

b) Adaptive Fault Detection

Adaptive Fault Detection

c) Kalman Filters

Kalman Filters

d) Decision Theoretic Approach

Decision Theoretic Approach employs four parameters - the desired false positive rate (alpha), the desired detection rate (beta), the history buffer length and the low-pass median filter length.

This algorithm use three parameters one is threshold which is calculated in terms of Alpha and Beta, and other two are buffer lengths (History buffer and n-Tap Median filter). Same scheme is used for this algorithm, such that minimum value of n = 7 is used for n-Tap Median filter with some appropriate value of History buffer. By keeping these values same and changing different values of Alpha and Beta (Threshold) for each dataset ROCs are generated.

Wiki Markup
([utilityFunctions|http://www.slac.stanford.edu/~kalim/event-detection/published-src/utilityFunctions.pm.html] \[[pm|http://www.slac.stanford.edu/~kalim/event-detection/published-src/utilityFunctions.pm]\]).

References

...

number of measurements made to the following sites from SLAC:

Site

pathchirp

iperf

thrulay

cern.ch

48647

24586

39510

desy.de

32247

4522

28689

fzk.de

65536

4874

42708

nslabs.ufl.edu

41206

1549

28613

switch.edu

19668

4638

28744

sdsc.edu

21176

4416

22456

triumf.ca

26425

4669

27021

utoronto.ca

40614

5003

21646

ornl.gov

35339

5182

18375

anl.gov

17968

1

27559

bnl.org

23580

20708

16000

cacr.caltech.edu

61871

25525

37293

dl.ac.uk

27806

6096

28058

nsk.su

20117

1

26845

cesnet.cz

23618

3062

28426

infn.it

30372

4343

28573

ultralight.caltech

3739

88

1534

SubTotal

539929

119263

452050

Data Sets

The data sets used in the study may be downloaded from the links listed below. These data sets were collected by the IEPM-BW project

Table 1: Performance measurement statistics compiled by IEPM, as seen from SLAC.

 

Data Sets with Events

Data Sets with no Events

IEPM

[rar] 3.4 MB, [zip] 3.6 MB

[rar] 3.3 MB, [zip] 3.5 MB

All files with name "filename_raw_dataset.pathchirp" contain the raw data i.e the available bandwidth measurements along with the timestamps which are used in all algorithms.
All files with name "filename_event_file.txt" contain the list of events identified.

Technical Report - Labeling and Comparative Analysis

The technical report titled "A performance evaluation of anomaly detection algorithms for Internet Paths" will be available soon.

Input/Tuning parameters

Plateau Algorithm (PL)

History Buffer Length (H)

Trigger Buffer Length (T)

Threshold (th)

Sensitivity (s)

240

6 - 45

0.10 - 0.70

1.0 - 2.8

Kalman Filters Method (KF)

Sensitivity (K)

Time Window (h)

0.001 - 11.0

6 - 20

Holt Winter's Method (HW)

? - alpha

? - beta

? - gamma

? - sigma

0.1

0.1 - 0.3

0.1 - 0.5

2.0

Adaptive Fault Detector (AFD)

Window Size (N)

? - alpha

? - beta

No. of Training Data (Hn)

20

0.95

0.0015 - 0.1

100

Decision Theoretic Approach (DTA)

History Buffer Length (N)

? - alpha

? - beta

Median filter length ( n)

30 - 90

0.01 - 0.34 

0.99

100

ROC Results

Datasets with Gaussian Distributions

CERN

FZK

SDSC

Image Added

Image Added

Image Added

TRIMUF

UTORONTO

Image Added

Image Added

Datasets with Weibull Distributions

DESY

NSLABS

SWITCH

Image Added

Image Added

Image Added

...