Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

 

Raw data

Labeled data

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="75f1176747e13dd2-052c093f-4076411c-acfa89d7-5e8b784e27510a640d0d83b0"><ac:plain-text-body><![CDATA[

SDSC

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/SDSC-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/SDSC-pathchirp.xls]]

[[txt

http://www.slac.stanford.edu/~kalim/event-detection/published-data/UTORONTO-pathchirp-labeled-events.txt]]

]]></ac:plain-text-body></ac:structured-macro>

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="823e0945a4fcab79-bd9b3a9d-450d4244-834998f4-daf162955ee6b0c5177b15bd"><ac:plain-text-body><![CDATA[

CERN

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/CERN-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/CERN-pathchirp.xls]]

[[txt

http://www.slac.stanford.edu/~kalim/event-detection/published-data/CERN-pathchirp-labeled-events.txt]]

]]></ac:plain-text-body></ac:structured-macro>

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="cf456783768974ad-c50c6d34-4e13447c-b0319a72-9456323772d4877f1ebe075b"><ac:plain-text-body><![CDATA[

FZK

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/FZK-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/FZK-pathchirp.xls]]

[[txt

http://www.slac.stanford.edu/~kalim/event-detection/published-data/FZK-pathchirp-labeled-events.txt]]

]]></ac:plain-text-body></ac:structured-macro>

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="1e344b4741d583a0-5dfa4b74-485142ae-9ecabbd8-05511b8069788572cfd4e3af"><ac:plain-text-body><![CDATA[

DESY

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/DESY-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/DESY-pathchirp.xls]]

[[txt

http://www.slac.stanford.edu/~kalim/event-detection/published-data/DESY-pathchirp-labeled-events.txt]]

]]></ac:plain-text-body></ac:structured-macro>

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="01f0349b0cf9379a-2253558c-4e474fc0-b4a8ba3a-fc145cec9dd29990f57121c6"><ac:plain-text-body><![CDATA[

UTORONTO

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/UTORONTO-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/UTORONTO-pathchirp.xls]]

[[txt

http://www.slac.stanford.edu/~kalim/event-detection/published-data/UTORONTO-pathchirp-labeled-events.txt]]

]]></ac:plain-text-body></ac:structured-macro>

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="339c2ef75b489f71-7e8d04c9-43104678-9e179c2f-5686b8df615fd81c7c44a356"><ac:plain-text-body><![CDATA[

TRIUMF

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/TRIUMF-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/TRIUMF-pathchirp.xls]]

[[txt

http://www.slac.stanford.edu/~kalim/event-detection/published-data/TRIUMF-pathchirp-labeled-events.txt]]

]]></ac:plain-text-body></ac:structured-macro>

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="1582f23fc593d2d4-d9631016-49894f42-8b839e8e-d139a5488ce3f8b683a82766"><ac:plain-text-body><![CDATA[

ORNL

[[csv

http://www.slac.stanford.edu/~kalim/event-detection/published-data/ORNL-pathchirp.csv]], [[xls

http://www.slac.stanford.edu/~kalim/event-detection/published-data/ORNL-pathchirp.xls]]

[txt]

]]></ac:plain-text-body></ac:structured-macro>

...

We initially define the sensitivity as one (1) and determine the optimal threshold value for each link (i.e. the value with the optimal ratio of true-positives to false positives). As suggested by the authors, this threshold falls between 30%-40%. Finally for the history buffer length, the trigger buffer length and the optimal threshold, we vary the sensitivity to determine the spectrum of the ratio of true-positive rate to false positive rate. Based on the observations we plot the ROC curves as shown in figure 2. One set of data points is shown in table 2.

Table 2: Results compiled by Plateau when analyzing the Internet path between SLAC and DESY.

...

Decision Theoretic Approach employs four parameters - the desired false positive rate (alpha), the desired detection rate (beta), the history buffer length and the low-pass median filter length.

This algorithm use three parameters one is threshold which is calculated in terms of Alpha and Beta, and other two are buffer lengths (History buffer and n-Tap Median filter). Same scheme is used for this algorithm, such that minimum value of n = 7 is used for n-Tap Median filter with some appropriate value of History buffer. By keeping these values same and changing different values of Alpha and Beta (Threshold) for each dataset ROCs are generated.

We apply the median filter of length 7 to remove the high frequency component. We then determine the optimum history buffer length by empirical observation. This turns out to be 90. Opting for the maximum detection rate of 0.99, we vary the desired false positive rate to obtain the entire spectrum of the ratio of true-positive rate to false positive rate. Based on the observations we plot the ROC curves as shown in figure 2. One set of data points is shown in table 5.

This algorithm use three parameters one is threshold which is calculated in terms of Alpha and Beta, and other two are buffer lengths (History buffer and n-Tap Median filter). Same scheme is used for this algorithm, such that minimum value of n = 7 is used for n-Tap Median filter with some appropriate value of History buffer. By keeping these values same and changing different values of Alpha and Beta (Threshold) for each dataset ROCs are generated.

Table 5: Results compiled by the proposed DTA when analyzing the Internet path between SLAC and DESY.

H

a

B

n-tap

TP

FP

#P

N~days

TPR

FPR

90

0.01100

0.99

7

0

9

31

672

0

0.013

90

0.01150

0.99

7

4

9

31

672

0.129

0.013

90

0.01200

0.99

7

4

12

31

672

0.129

0.018

90

0.01400

0.99

7

13

26

31

672

0.419

0.039

90

0.01600

0.99

7

17

31

31

672

0.548

0.046

90

0.01800

0.99

7

18

45

31

672

0.581

0.067

90

0.02000

0.99

7

22

69

31

672

0.71

0.103

90

0.02100

0.99

7

25

84

31

672

0.806

0.125

90

0.02160

0.99

7

29

88

31

672

0.935

0.131

90

0.02163

0.99

7

29

91

31

672

0.935

0.135

90

0.02164

0.99

7

30

91

31

672

0.968

0.135

Legend:
H - History buffer length, a - desired false positive rate, B - desired detection rate, n-tap - median filter length, TP - true positives obtained, FP - false positives obtained, #P - true positives, N~days - days observed, TPR - true positive rate, FPR - false positive rate.

Wiki Markup
The source code of the implementation is available in [C#|http://www.slac.stanford.edu/~kalim/event-detection/published-src/c-dta-impl.html] \[[cs|http://www.slac.stanford.edu/~kalim/event-detection/published-src/dta.cs]\] and [perl|http://www.slac.stanford.edu/~kalim/event-detection/published-src/dta.pl.html] \[[pl|http://www.slac.stanford.edu/~kalim/event-detection/published-src/dta.pl]\] 
Wiki Markup
([utilityFunctions|http://www.slac.stanford.edu/~kalim/event-detection/published-src/utilityFunctions.pm.html] \[[pm|http://www.slac.stanford.edu/~kalim/event-detection/published-src/utilityFunctions.pm]\], [conf|http://www.slac.stanford.edu/~kalim/event-detection/published-src/dta.conf]).

References

  1. C. Logg, L. Cottrell, and J. Navratil. Experiences in traceroute and available bandwidth change analysis. In NetT '04: Proceedings of the ACM SIGCOMM workshop on Network troubleshooting, pages 247-252. ACM, 2004.
  2. A. Soule, K. Salamatian, and N. Taft. Combining filtering and statistical methods for anomaly detection. In Internet Measurement Conference (IMC 2005), pages 331-344. USENIX, 2005.
  3. H. Hajji. Statistical analysis of network traffic for adaptive faults detection. In IEEE Transactions on Neural Networks, pages 1053-1063, 2005.