Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Main window (top) after the file scan. In this case the file contain several "calibration cycles" (motor scan steps), and the GUI lists number of calibration cycles and number of events. Some more information is printed to the terminal window from which the xtcbrowser was launched.

Another window, pyana control center (bottom), also pops up, showing the contents of the file in terms of detectors / devices. You can set general parameters for pyana processing and plotting in this GuiGUI, among them how often to update plots (default is every 100 events). As

Image Added Image Added

Once you checkmark the detectors you want to display information from, another tab will pop up showing the current pyana configuration , as it will be written to file. text.

If a ControlPV is present and checked off, only a pyana_scan module will be used. All the other devices you check will be added to the input of the scan.
If no ControlPV is used, other pyana modules will be configured as appropriate to display a variety of information from the events.

Image Removed Image Removed

Once you start selecting devices, the pyana configuration text shows up in the GUI. If "Epics Process Variables" are checked off, another Gui appears that lists all the epics variables. Select the ones you want to display.

Press the "Write configuration to file" button once you're done. You can further edit the file by hand if you want. Once a file is written, the a "Run pyana" button appears.
If "Epics Process Variables" are checked off, another Gui appears that lists all the epics variables. Select the ones you want to displaywill appear.

  • "Run pyana" button will appear once you've written to file. You can still edit the file (which lauches an emacs window... my apologies to non-emacs-users... Will have a more generic solution soon'ish). "Run pyana" lauches an input GUI that shows you the runstring. You can use the same runstring from the command line. Or hit "OK" and it'll run.
  • After launching pyana, another button "Quit pyana" appears... If you see you need to change parameters, you can stop pyana, edit the configuration file, and start over again.

...

MatLab

MatPlotLib

Comments

Loglog plot of one array vs. another

Code Block
%
%
%
a1 = subplot(121);
loglog(channels(:,1),channels(:,2),'o')
xlabel('CH0')
ylabel('CH1')
a2 = subplot(122);
loglog(channels(:,3),channels(:,4),'o')
xlabel('CH2')
ylabel('CH3')

Loglog plot of one array vs. another

Code Block
import matplotlib.pyplot as plt
import numpy as np

a1 = plt.subplot(221)
plt.loglog(channels[:,0],channels[:,1], 'o' )
plt.xlabel('CH0')
plt.ylabel('CH1')
a2 = plt.subplot(222)
plt.loglog(channels[:,2],channels[:,3], 'o' )
plt.xlabel('CH2')
plt.ylabel('CH3')

channels is a 4xN array of floats, where N is the number of events. Each column corresponds to one out of four Ipimb channels.

Note that the arrays are indexed with 1,2,3,4 in MatLab and 0,1,2,3 in MatPlotLib/NumPy/Python.

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="0094e741121f029a-fec20e20-4db44a05-9686b97c-39e33d740ac587e1a2a3c248"><ac:plain-text-body><![CDATA[Note also the use of paranthesis, array() in MatLab, array[] in MatPlotLib.

]]></ac:plain-text-body></ac:structured-macro>

test

test

Test

array of limits from graphical input

array of limits from graphical input

 

Code Block
axes(a1)
hold on
lims(1:2,:) = ginput(2);

axes(a2)
hold on
lims(3:4,:) = ginput(2);
Code Block
lims = np.zeros((4,2),dtype="float")

plt.axes(a1)
plt.hold(True)
lims[0:2,:] = plt.ginput(2)

plt.axes(a2)
plt.hold(True)
lims[2:4,:] = plt.ginput(2)

In MatLab, lims is an expandable array that holds limits as set by input from mouse click on the plot (ginput).
NumPy arrays cannot be expanded, so I've declared a 4x2 array of zeros to start with, then fill it with ginput().

 

 

 

filter

filter

 

Code Block
fbool1 = (channels(:,1)>min(lims(1:2,1)))&(channels(:,1)<max(lims(1:2,1)))
fbool2 = (channels(:,2)>min(lims(1:2,2)))&(channels(:,2)<max(lims(1:2,2)));
fbool = fbool1&fbool2
loglog(channels(fbool,1),channels(fbool,2),'or')

fbool3 = (channels(:,3)>min(lims(3:4,3)))&(channels(:,3)<max(lims(3:4,3)))
fbool4 = (channels(:,4)>min(lims(3:4,4)))&(channels(:,4)<max(lims(3:4,4)));
fbool = fbool3&fbool4
loglog(channels(fbool,3),channels(fbool,4),'or') 
Code Block
fbools0 = (channels[:,0]>lims[:,0].min())&(channels[:,0]<lims[:,0].max())
fbools1 = (channels[:,1]>lims[:,1].min())&(channels[:,1]<lims[:,1].max())
fbools = fbools0 & fbools1

fbools2 = (channels[:,2]>lims[:,2].min())&(channels[:,2]<lims[:,2].max())
fbools3 = (channels[:,3]>lims[:,3].min())&(channels[:,3]<lims[:,3].max())
fbools = fbools2&fbools3

Comment