Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Xtc files contain the raw data streamed from the DAQ online system, therefore they are not indexed and the events don't always line up in the "right" order. Therefore it's not straight-forward to browse (back and fourth) through an xtc file. This tool (XtcEventBrowser) is also not a real browser, but allows a simple-to-run interface to the xtc files. The package name is XtcEventBrowser, the executables (xtcbrowser and xtcscanner) are found in the app subdirectory of this package, and all other code is in the src subdirectory.

xtcbrowser

This page is currently under revision. See an earlier version (e.g. v77) of this page ("Tools"->"Page History") to get self-consistent documentation.

The xtcbrowser is the command to launch the Event Display for xtc files. The package name is XtcEventBrowser. It is written in python, relying on PyQt4 for graphical user interface. The data processing is done via the pyana framework and visualization provided by matplotlib.

...

Code Block
[user@psana0XXX myrelease] addpkg XtcEventBrowser V00-00-1617
[user@psana0XXX myrelease] scons

...

MatLab

MatPlotLib

Comments

Loglog plot of one array vs. another

Code Block
%
%
%
a1 = subplot(121);
loglog(channels(:,1),channels(:,2),'o')
xlabel('CH0')
ylabel('CH1')
a2 = subplot(122);
loglog(channels(:,3),channels(:,4),'o')
xlabel('CH2')
ylabel('CH3')

Loglog plot of one array vs. another

Code Block
import matplotlib.pyplot as plt
import numpy as np

a1 = plt.subplot(221)
plt.loglog(channels[:,0],channels[:,1], 'o' )
plt.xlabel('CH0')
plt.ylabel('CH1')
a2 = plt.subplot(222)
plt.loglog(channels[:,2],channels[:,3], 'o' )
plt.xlabel('CH2')
plt.ylabel('CH3')

channels is a 4xN array of floats, where N is the number of events. Each column corresponds to one out of four Ipimb channels.

Note that the arrays are indexed with 1,2,3,4 in MatLab and 0,1,2,3 in MatPlotLib/NumPy/Python.

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="1" ac:macro-id="860dc1658cc71f0c-67b580d8-49484da7-bd28bd38-19d70c545153cc0c89d37cdc"><ac:plain-text-body><![CDATA[Note also the use of paranthesis, array() in MatLab, array[] in MatPlotLib.

]]></ac:plain-text-body></ac:structured-macro>

test

test

Test

array of limits from graphical input

array of limits from graphical input

 

Code Block
axes(a1)
hold on
lims(1:2,:) = ginput(2);

axes(a2)
hold on
lims(3:4,:) = ginput(2);
Code Block
plt.axes(a1)
plt.hold(True)
limslista = plt.ginput(2)

plt.axes(a2)
plt.hold(True)

limslistb = plt.ginput(2)
limsa = np.array(limslista)
limsb = np.array(limslistb)

lims = np.hstack( [limsa, limsb] )

In MatLab, lims is an expandable array that holds limits as set by input from mouse click on the plot (ginput).
NumPy arrays cannot be expanded, so I've chosen to append to a python list first, then fill a NumPy array for the usage to look the same.

The exact usage of the lims array depends on where you place each limit. I think perhaps I've done it differently from the MatLab version.

 

 

 

filter

filter

 

Code Block
fbool1 = (channels(:,1)>min(lims(1:2,1)))&(channels(:,1)<max(lims(1:2,1)))
fbool2 = (channels(:,2)>min(lims(1:2,2)))&(channels(:,2)<max(lims(1:2,2)));
fbool = fbool1&fbool2
loglog(channels(fbool,1),channels(fbool,2),'or')

fbool3 = (channels(:,3)>min(lims(3:4,3)))&(channels(:,3)<max(lims(3:4,3)))
fbool4 = (channels(:,4)>min(lims(3:4,4)))&(channels(:,4)<max(lims(3:4,4)));
fbool = fbool3&fbool4
loglog(channels(fbool,3),channels(fbool,4),'or') 
Code Block
fbools0 = (channels[:,0]>lims[:,0].min())&(channels[:,0]<lims[:,0].max())
fbools1 = (channels[:,1]>lims[:,1].min())&(channels[:,1]<lims[:,1].max())
fbools = fbools0 & fbools1

fbools2 = (channels[:,2]>lims[:,2].min())&(channels[:,2]<lims[:,2].max())
fbools3 = (channels[:,3]>lims[:,3].min())&(channels[:,3]<lims[:,3].max())
fbools = fbools2&fbools3

Comment