Test of Peak Finders - V2

Content

- Content
- Data
- V2 News
 - Peak selection parameters
 - Summary of peak selection parameters
 - Raw n-d array pre-processing before peak-finders
 - Peak list
- Peak list processing
 - Peak pre-selection for histogramms
 - ARC region
 - EQU region
 - Peak selection for fit
 - ARC region
 - EQU region
- References

Data

exp=cxif5315:run=169

V2 News

V2 is done for test of peak finders after revision r1.

See for details

- Hit/Peak Finding - description of algorithms
- ImgAlgos.PyAlgos - peak finders API
- PSAS-147 - details about revision 1

We work with peak finder versions v2r1, v3r1, v4r1.

Data processing and peak finding is done in cxif5315/proc-cxif5315-r0169-data-pfvn-2016-04-19.py

Peak selection parameters

- selection parameters were set with as minimal number of parameters as possible.
- selection parameters of different peak finders were adjusted to get about the same yield of peaks in the file.
from ImgAlgos.PyAlgos import PyAlgos

alg_arc = PyAlgos(windows=winds_arc, mask=mask_arc, pbits=2)
#alg_arc.set_peak_selection_pars(npix_min=0, npix_max=1e6, amax_thr=0, atot_thr=500, son_min=6) # for pfv2r1
alg_arc.set_peak_selection_pars(npix_min=0, npix_max=1e6, amax_thr=0, atot_thr=0, son_min=6) # for pfv3r1, pfv4r1

alg_equ = ... # the same

in the event loop:

run peakfinders and get list of peak records for each region
#peaks_arc = alg_arc.peak_finder_v2r1(nda, thr=30, r0=6, dr=0.5)
peaks_arc = alg_arc.peak_finder_v3r1(nda, rank=5, r0=6, dr=0.5)
#peaks_arc = alg_arc.peak_finder_v4r1(nda, thr_low=10, thr_high=150, rank=5, r0=6, dr=0.5)

#peaks_equ = alg_equ.peak_finder_v2r1(...) # The same

Summary of peak selection parameters

peak finder specific parameters for seed peak finding
- v2: thr=30
- v3: rank=5
- v4: thr_low=10, thr_high=150, rank=5

use the same parameters for S/N calculation
- r0=6, dr=0.5

peak selection in the list
- common: son_min=6
- v2: atot_thr=500 # to keep the same number of peaks in the list as for v3,v4

Raw n-d array pre-processing before peak-finders
- get raw data
- subtract pedestals
- subtract radial background to polarization corrected data
- apply status mask
```
from pyimgalgos.RadialBkgd import RadialBkgd, polarization_factor

nda_bkgd = det.bkgd(runnum) # pre-defined n-d array with averaged background from
calib/.../pixel_bkgd/...
nda_smask = det.mask(runnum, calib=False, status=True, edges=True, central=True,
unbond=True, unbondnbrs=True)

mask_bkgd = nda_smask # * mask_winds_tot
rb = RadialBkgd(Xarr, Yarr, mask=mask_bkgd, radedges=(5200, 80000), nradbins=200,
nphibins=1)
pf = polarization_factor(rb.pixel_rad(), rb.pixel_phi(), DIST_STOD)

# in the event loop:
data = det.raw(evt)
if data is not None :
    data = np.array(data, dtype=np.float32, copy=True)
    data -= nda_peds

    #det.common_mode_apply(evt, data, cmpars=(1,50,50,100))
    #data = subtract_bkgd(data, nda_bkgd, mask=nda_smask, winds=winds_bkgd, pbits=0)

    data = rb.subtract_bkgd(data.flatten() * pf)
data.shape = shape_cspad
    data *= nda_smask
```

Common mode correction was tested before and after background subtraction.

For unknown reason it makes image visually worse...

Peak list

In revision 1 four parameters col_min, col_max, row_min, row_max were discarded.

For each peak finder we created list of peak parameters, beginning as
Peak list processing

For peak list processing we use script:

```
cxif5315/proc-cxif5315-r0169-peaks-from-file-v6.py
```

Peak pre-selection for histogramms

ARC region
def procPeakDataArc(pk):

 # discard from all histograms except its own
 sp.lst_arc_atot.append(pk.atot)
 if pk.atot<2000 : return

 sp.lst_arc_amax.append(pk.amax)
 sp.lst_arc_npix.append(pk.npix)
 sp.lst_arc_r.append(pk.r)
 ...

Arc: Amax

Entries=23113
Mean=351.08 ± 28.36
RMS=194.45 ± 20.06
\gamma=1.286 \, \phi=1.083

Arc: Amax

Entries=32284
Mean=251.97 ± 41.32
RMS=196.34 ± 29.22
\gamma=1.688 \, \phi=2.237
Arc: S/N - for all peak pixels

- Entries: 70560
- Mean: 12.17 ± 1.92
- RMS: 6.43 ± 1.36
- γ1 = 3.971, γ2 = 25.161

Arc: Number of pixels/peak

- Entries: 25107
- Mean: 69.08 ± 6.96
- RMS: 45.34 ± 4.92
- γ1 = 2.501, γ2 = 8.355

Arc: Number of pixels

- Entries: 34290
- Mean: 116.67 ± 6.34
- RMS: 9.09 ± 4.48
- γ1 = 2.610, γ2 = 7.101
def procPeakDataEqu(pk):
 """ Process peak for EQU region; accumulate peak data
 """
 #===================
 # discard from all histograms except its own
 sp.lst_equ_atot.append(pk.atot)
 if pk.atot<2000 : return
 sp.lst_equ_r_raw.append(pk.r)
 if pk.r<100 : return
 #===================
 sp.lst_equ_r .append(pk.r)
 sp.lst_equ_amax.append(pk.amax)
 sp.lst_equ_npix.append(pk.npix)

...
Peak selection for fit

ARC region

def peakIsSelectedArc(pk) :
 """Apply peak selection criteria to each peak from file
 """
 if pk.son<9 : return False
 if pk.amax<150 : return False
 if pk.atot<2000 : return False
 if pk.npix>500 : return False
 if pk.r<435 : return False
 if pk.r>443 : return False
 if pk.rms>80 : return False
 if pk.bkgd<-20 : return False
 if pk.bkgd>50 : return False
 return True
Arc: Distance between 2 peaks

Entries=2909
Mean=169.01 ± 14.91
RMS=101.42 ± 10.54
σ = 0.499 \(\mu = 1.438 \)

Arc: Distance between 2 peaks

Entries=1008
Mean=169.81 ± 17.37
RMS=103.34 ± 12.28
σ = 0.420 \(\mu = 1.560 \)

Arc: Distance between 2 peaks

Entries=4061
Mean=152.86 ± 11.84
RMS=103.95 ± 8.37
σ = 0.066 \(\mu = 1.462 \)
To fit peaks we use `funcy_l1_v0(x, phi_deg, bet_deg, DoR=433/sp.DETD, sgnr=-1.)`
EQU region
def peakIsSelectedEqu(pk):
 """Apply peak selection criteria to each peak from file
 """
 if pk.son<9 : return False
 if pk.amax<150 : return False
 if pk.atot<2000 : return False
 if pk.npix>500 : return False
 if pk.r<100 : return False
 if pk.r>454 : return False
 if pk.rms>80 : return False
 if math.fabs(pk.bkgd)>20 : return False
 return True

To fit peaks we use `funcy_l0` which automatically select solution depending on sign of parameter B.

![Equi: fit parameter p1=beta](image1)

![Equi: fit parameter p1=beta](image2)
References

- Hit/Peak Finding Details - description of algorithms
- ImgAlgos.PyAlgos - interface methods
- PSAS-147 - details about revision 1
- Radial Background Subtraction Algorithm