Test of Peak Finders - V2

Content

- Content
- Data
- V2 News
 - Peak selection parameters
 - Summary of peak selection parameters
 - Raw n-d array pre-processing before peak-finders
 - Peak list
 - Peak list processing
 - Peak pre-selection for histogramms
 - ARC region
 - EQU region
 - Peak selection for fit
 - ARC region
 - EQU region
 - References

Data

exp=cxif5315:run=169

V2 News

V2 is done for test of peak finders after revision r1.

See for details

- Hit/Peak Finding - description of algorithms
- ImgAlgos.PyAlgos - peak finders API
- PSAS-147 - details about revision 1

We work with peak finder versions v2r1, v3r1, v4r1.

Data processing and peak finding is done in cxif5315/proc-cxif5315-r0169-data-pfvn-2016-04-19.py

Peak selection parameters

- selection parameters were set with as minimal number of parameters as possible.
- selection parameters of different peak finders were adjusted to get about the same yield of peaks in the file.
from ImgAlgos.PyAlgos import PyAlgos

alg_arc = PyAlgos(windows=winds_arc, mask=mask_arc, pbits=2)
#alg_arc.set_peak_selection_pars(npix_min=0, npix_max=1e6, amax_thr=0, atot_thr=500, son_min=6) # for pfv2r1
alg_arc.set_peak_selection_pars(npix_min=0, npix_max=1e6, amax_thr=0, atot_thr=0, son_min=6) # for pfv3r1, pfv4r1

alg_equ = ... # the same

in the event loop:

 # run peakfinders and get list of peak records for each region
 #peaks_arc = alg_arc.peak_finder_v2r1(nda, thr=30, r0=6, dr=0.5)
 #peaks_arc = alg_arc.peak_finder_v3r1(nda, rank=5, r0=6, dr=0.5)
 #peaks_arc = alg_arc.peak_finder_v4r1(nda, thr_low=10, thr_high=150, rank=5, r0=6, dr=0.5)
 #peaks_equ = alg_equ.peak_finder_v2r1(...) # The same

Summary of peak selection parameters

peak finder specific parameters for seed peak finding

- v2: thr=30
- v3: rank=5
- v4: thr_low=10, thr_high=150, rank=5

use the same parameters for S/N calculation

- r0=6, dr=0.5

peak selection in the list

- common: son_min=6
- v2: atot_thr=500 # to keep the same number of peaks in the list as for v3,v4

Raw n-d array pre-processing before peak-finders

- get raw data
- subtract pedestals
- subtract radial background to polarization corrected data
- apply status mask
from pyimgalgos.RadialBkgd import RadialBkgd, polarization_factor

nda_bkgd = det.bkgd(runnum) # pre-defined n-d array with averaged background from
calib/.../pixel_bkgd/...
nda_smask = det.mask(runnum, calib=False, status=True, edges=True, central=True,
unbond=True, unbondnbrs=True)

mask_bkgd = nda_smask * mask_winds_tot
rb = RadialBkgd(Xarr, Yarr, mask=mask_bkgd, radedges=(5200, 80000), nradbins=200,
nphibins=1)
pf = polarization_factor(rb.pixel_rad(), rb.pixel_phi(), DIST_STOD)

in the event loop:
nda_data = det.raw(evt)
if nda_data is not None :
 nda = np.array(nda_data, dtype=np.float32, copy=True)
 nda -= nda_peds
 #det.common_mode_apply(evt, nda, cmpars=(1,50,50,100))
 #nda = subtract_bkgd(nda, nda_bkgd, mask=nda_smask, winds=winds_bkgd, pbits=0)
 nda = rb.subtract_bkgd(nda.flatten() * pf)
 nda.shape = shape_cspad
 nda *= nda_smask

Common mode correction was tested before and after background subtraction.
For unknown reason it makes image visually worse...

Peak list

In revision 1 four parameters col_min, col_max, row_min, row_max were discarded.
For each peak finder we created list of peak parameters, beginning as
Peak list processing

For peak list processing we use script:

```
cxif5315/proc-cxif5315-r0169-peaks-from-file-v6.py
```

Peak pre-selection for histogramms

ARC region

```
def procPeakDataArc(pk):
    """ Process peak for ARC region; accumulate peak statistics in histogram arrays. """
    # discard from all histograms except its own
    sp.lst_arc_atot.append(pk.atot)
    if pk.atot<2000: return
    # sp.lst_arc_amax.append(pk.amax)
    sp.lst_arc_npix.append(pk.npix)
    sp.lst_arc_r.append(pk.r)
    ...
Arc: bkgd

Entries = 70325
Mean = 10.10 ± 3.16
RMS = 13.67 ± 1.23
γ = 1.710  δ = 5.728

Arc: S/N - for all peak pixels

Entries = 24635
Mean = 18.10 ± 2.00
RMS = 8.86 ± 1.49
γ = 2.443  δ = 9.217

Arc: S/N - for all peak pixels

Entries = 34284
Mean = 10.95 ± 2.15
RMS = 6.40 ± 1.32
γ = 4.245  δ = 27.672
def procPeakDataEqu(pk):
    """ Process peak for EQU region; accumulate peak data """
    #===================
    # discard from all histograms except its own
    sp.lst_equ_atot.append(pk.atot)
    if pk.atot<2000: return
    sp.lst_equ_r_raw.append(pk.r)
    if pk.r<100 : return
    #===================
    sp.lst_equ_r   .append(pk.r)
    sp.lst_equ_amax.append(pk.amax)
    sp.lst_equ_npix.append(pk.npix)
    ...

Arc: Number of peaks selected

Equ: Amax
Equ: Atot

Entries=248442
Mean=1223.03 ± 145.43
RMS=713.60 ± 102.83
\(\gamma=\frac{1}{2}\\sigma\approx 19.365\)

Equ: Atot

Entries=199064
Mean=2176.97 ± 123.54
RMS=977.34 ± 87.36
\(\gamma=\frac{1}{2}\\sigma\approx 7.321\)

Equ: rms

Entries=5868
Mean=24.78 ± 1.87
RMS=9.57 ± 1.40
\(\gamma=\frac{1}{2}\\sigma\approx 9.628\)
def peakIsSelectedArc(pk):
    """Apply peak selection criteria to each peak from file"""
    if pk.son < 9:
        return False
    if pk.amax < 150:
        return False
    if pk.atot < 2000:
        return False
    if pk.npix > 500:
        return False
    if pk.r < 435:
        return False
    if pk.r > 443:
        return False
    if pk.rms > 80:
        return False
    if pk.bkgd < -20:
        return False
    if pk.bkgd > 50:
        return False
    return True
To fit peaks we use $\text{funcy}_{11\, \text{v0}}(x, \phi_{\text{deg}}, \beta_{\text{deg}}, \text{DoR}=433/\text{sp.} \text{DET}D, \text{sgnrt}=-1.)$
EQU region
To fit peaks we use `funcy_l0` which automatically select solution depending on sign of parameter B.

```
def peakIsSelectedEqu(pk) :
 """Apply peak selection criteria to each peak from file
 """
 if pk.son<9 : return False
 if pk.amax<150 : return False
 if pk.atot<2000 : return False
 if pk.npix>500 : return False
 if pk.r<100 : return False
 if pk.r>454 : return False
 if pk.rms>80 : return False
 if math.fabs(pk.bkgd)>20 : return False
 return True
```
References

- Hit/Peak Finding Details - description of algorithms
- ImgAlgos.PyAlgos - interface methods
- PSAS-147 - details about revision 1
- Radial Background Subtraction Algorithm