Pulse pileup

- We are concerned with the sum $f_{\text {sum }}(t)$ of two pulses signal pulse $f_{\text {sig }}(t)$ with peak height $A_{\text {sig }}$ and hit time $t_{\text {sig }}$, background pulse $f_{\text {back }}(t)$ with peak height $A_{\text {back }}$ and hit time $t_{\text {back }}$
- For $t<\max \left(t_{\text {sig }}, t_{\text {back }}\right)$, we see only the first of the pulses
- But the sum of two shaping curves fits exactly to a shaping
 curve with different height and hit time

Effects of pileup

- $t_{\text {sum }}=\frac{A_{\text {sig }} t_{\text {sig }} e^{t_{\text {sig }} / T}+A_{\text {back }} t_{\text {back }} e^{t_{\text {back }} / T}}{A_{\text {sig }} e^{t_{\text {sig }} / T}+A_{\text {sig }} e^{t_{\text {sig }} / T}}$
- $A_{\text {sum }}=$
$e^{-t_{\text {sum }} / T}\left(A_{\text {sig }}\left(t_{\text {sum }}-t_{\text {sig }}+T\right) e^{t_{\text {sig }} / T}+A_{\text {back }}\left(t_{\text {sum }}-t_{\text {back }}+T\right) e^{t_{\text {back }} / T}\right)$
- This causes the fitted time to be "pulled" by the background hit time:
$t_{\text {sum }}-t_{\text {sig }}=\left(t_{\text {back }}-t_{\text {sig }}\right) \frac{A_{\text {back }} \exp \left(t_{\text {back }}-t_{\text {sig }}\right) / T}{A_{\text {sig }}+A_{\text {back }} \exp ^{\left(t_{\text {back }}-t_{\text {sig }}\right) / T}}$
- If we can get the background peak height and time, we can correct for this

Cases

- Signal and background fall in the same clock cycle \rightarrow no samples before pileup
- No way to identify this; can estimate error based on background rate and height distribution
- Signal and background are one clock cycle apart $\rightarrow 1$ sample before pileup
- Can't fit exactly (relative heights of the two pulses is undetermined), but at least we know there's background
- Signal and background are more than clock cycle apart
- If we have at least 2 samples above threshold before pileup, and 2 after, we can fit everything
- 3 after pileup is ideal (lets us know if there's more than one background pulse)

One cycle apart

The fitter

- Three approaches:
- Fully nonlinear: use Minuit to fit times and heights
- Partly analytic: analytic fit for heights, given times; use Minuit for times
- Fully analytic: analytic fit for everything (assumes perfect CR-RC shaping)
- These results are from fully analytic fitter
- Step 1: fit sections of samples to CR-RC curves (i.e. samples 0-2, samples 3-5)
- Step 2: use formulas to subtract background pulses
- Step 3: Return the fit with the best χ^{2}

Single-peak timing

- Generate one pulse - height 25, Gaussian noise with $\sigma=1$

Single-peak height

Single-peak cut efficiency

Two-peak fit

- Generate two pulses $-t_{\text {sig }}=[24,48], t_{\text {back }}=[-120,100]$

Two-peak timing

