CHAPTER 4 : PHASE RETRIEVAL WITH
THE FAST FOURIER TRANSFORM

4.1 INTRODUCTION AND OVERVIEW

In the previous chapter, we developed a generalised notion of phase which is
well-defined for a broad class of partially-coherent free-space radiations
such as visible light, X-rays, electrons and neutrons. In the present chapter,
we invert a paraxial form of the associated partially-coherent transport-of-
intensity equation in order to develop a rapid and stable deterministic
algorithm for unique non-interferometric phase recovery.

The problem of deterministic phase retrieval for the case of non-uniform
intensity paraxial coherent illumination has been previously tackled using a
propagation-based approach ; section 4.2 is a critical evaluation of this
earlier method (published by T.E.Gureyev and K.A.Nugent in 1996). We
point out that the computing power needed by this previous algorithm
makes its use prohibitive unless one has a supercomputer. Furthermore,
this approach contains no treatment of partially-coherent illumination'”

Section 4.3 takes, as a starting point, the partially-coherent transport-of-
intensity equation developed in the previous chapter. Assuming the
absence of vortices and adopting the paraxial approximation, we develop a
symbolic solution for this equation which permits quantitative propagation-
based phase imaging of paraxial vortex-free partially-coherent radiation.

Section 4.4 employs this symbolic solution to develop a rapid, determin-istic
and stable propagation-based phase retrieval algorithm using the Fast
Fourier Transform. This algorithm is tested on simulated data for the case
of both coherent and partially-coherent illumination. We also present an
analysis of its stability properties with respect to noise.

4.2 OUTLINE AND CRITIQUE OF AN EARLIER METHOD

Prior to undertaking the research outlined in this chapter, a method was
developed by T.E.Gureyev and K.A.Nugent for the propagation-based phase
retrieval of coherent paraxial scalar electromagnetic radiation'”. This work

162 Compare, however, T.E.Gureyev and S.W.Wilkins, On X-ray phase retrieval from polychromatic
images, Opt.Comm. 147 229-232 (1998) & Erratum, Opt.Comm. 154 391 (1998) ; T .E.Gureyev,
Transport of intensity equation for beams in an arbitrary state of temporal and spatial coherence (1998),
submitted.

163 T.E.Gureyev and K.A Nugent, Phase retrieval with the transport-of-intensity equation. I1.
Orthogonal series solution for nonuniform illumination, J.Opt.Soc.Am.A 13 1670-1682 (1996) ; T .E.
Gureyev and K.A.Nugent, Rapid quantitative phase imaging using the transport of intensity equation,
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developed a unique and stable deterministic solution to the problem, based
upon an expansion of the phase into a weighted sum of orthogonal
polynomials. We summarise this earlier method and then point out that the
extreme demands it makes on computer hardware are prohibitive for all but
the coarsest arrays, unless one makes use of a powerful supercomputer.

(a) Outline of Gureyev-Nugent method

Suppose that we have coherent paraxial scalar electromagnetic radiation
incident upon a rectangular aperture, and suppose that we measure the
intensity and intensity derivative of the radiation over the aperture. We
have already mentioned that, if there are no intensity zeroes over the
aperture, then the coherent transport-of-intensity equation yields a unique
solution for the phase over the aperture plane'”. The method of Gureyev
and Nugent is a means for obtaining this solution. We briefly summarise
this method, a full derivation of which is given in appendix A.

The scaled intensity derivative F = kd,I on the right-hand-side of the

coherent paraxial transport-of-intensity equation'® may be expressed as a
weighted sum of Fourier harmonics Wmn(x,y) = exp(Znimx/ a)exp(Zniny/b) ,

which are orthonormal and complete over the rectangular domain
O=x=a,0=y=b. Suppose the Fourier coefficients F_ of the scaled

intensity derivative’'s Fourier expansion F(x,y) = Em . anWmn(X,y) are lined

up in a column vector. Gureyev and Nugent showed that this column vector
of Fourier coefficients F  can be multiplied by the intensity-dependent

matrix [M™" ]
(D) ¢y =ab ¥ [Mo]'E,

to obtain a column vector containing the coefficients ¢, in the Fourier

expansion q)(x,y) = Em ) ¢mnWmn(x,y) of the phase over the region of interest.

The matrix [M"" ] is obtained by inverting the matrix M™" :

m-m’
In—n’ ’

+
a b

2) M =4J_cz(m’mb n’na)

where I are Fourier coefficients in the expansion I(x,y) = E I W (X,y)

m,n mn mn

of the intensity in the plane z = 0.

(b) Critique of Gureyev-Nugent method

The major disadvantage of the method outlined above is that the inversion
of the intensity-dependent matrix M™" is extremely demanding on

Opt.Comm. 133 339-346 (1997). C/f the similar approach in D.Van Dyck and W.Coene, A new pro-
cedure for wave function restoration in high resolution electron microscopy, Optik 77 125-128 (1987).
164 See article 3.3.

15 See equation (45), article 2.4.2.
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computer memory. To retrieve Fourier coefficients ¢, up to order M,N one
needs to solve a linear system of equations involving a complex matrix of
linear dimension 4MN + 2M + 2N elements'®. The number of floating-point
operations required to do this is approximately equal to one third of the
cube of its linear dimension (for Gauss-Jordan elimination, which does not
require one to calculate the inverse matrix in order to solve the linear
system)'”. Since the Fast Fourier Transform (FFT) of an M x N pixel array

requires MN log,(MN) operations, the number of floating-point operations to
retrieve the phase to order M,N is'® 1(4MN +2M + 2N )’ + 3MN log, (MN).

The memory required to store the array is 2b(4MN + 2M + 2N)* bits,
where b is the number of bits of information required to encode each real
number. Consider, for example, a 256 x 256 pixel 16-bit image array. Here,
M™" is a 263168 x 263168 pixel complex array which would require 2200
gigabytes of memory to store ; the linear system of equations in the
Gureyev-Nugent method requires 6x10" floating-point operations to solve.
Assuming sufficient memory which can be instantaneously accessed, a
CRAY T3E-900 Series supercomputer with a maximum peak performance of
1.8 x 10" floating-point operations per second would take approximately one
hour to recover the phase.

It is clear that the procedure just outlined is very demanding on both
computer memory and speed. The remainder of the chapter will be devoted
to the development and testing of an alternative algorithm, valid for both
coherent and partially-coherent radiation, which substantially reduces
demands on computer hardware and makes the phase retrieval of images of
substantial size quite accessible to analysis on a modest modern personal
computer.

4.3 SYMBOLIC SOLUTION FOR THE PARTIALLY-COHERENT
TRANSPORT-OF-INTENSITY EQUATION

We develop a symbolic solution for the partially-coherent transport-of-
intensity equation which, in the paraxial approximation, gives the scalar
and vector phases associated with our partially-coherent wavefield.

We know from equation (23) of Chapter 3 that the unambiguous part §2’we(f)
of the time-average energy flow vector may be written as the gradient of a
scalar function (1) ; since S/

ave

(t) is divergence free, we conclude that :

(3) V() =0.

166 T.E.Gureyev and K.A .Nugent (1997).

'7 Information regarding the number of floating point operations required for solving a linear system
(without needing to calculate the inverse matrix) and performing FFTs is taken from W.H.Press,
S.A.Teukolsky, W.T .Vetterling and B.P.Flannery, Numerical Recipes in FORTRAN : the art of scientific
computing (second edition), Cambridge University Press (1992).

' The operations used to construct the matrix in (2) are ignored.
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Adopt the paraxial approximation and split (3) into contributions from
transverse (subscript “_L”) and longitudinal components (subscript “z”) :

@) Viy+9,(0,9)=0,

where the dominant direction of energy flow is in the z direction. Next,
recall from the discussions centred around equations (16) and (17) of chapter
3, that in both the paraxial and geometric-optics approximations the
modulus of the energy-flow vector is proportional to the time-averaged
intensity. Since g’(f) = le(f) and the radiation is paraxial, we infer that
the z-component of the energy-flow vector is proportional to the intensity :

wk . -
(5) 5 1(5.0)~9,4(7.0).

If we substitute (5) into (4), we may then write down the following formal
expression for 1])(?) in the plane z =0 :

©) v=-2Kv2gr.
4

We have now recovered v in a two-dimensional plane, from which we now

obtain an expression for the unambiguous part S' = Vay(F) of the energy flow
vector in z = 0. To do this, take the three-dimensional gradient of equation

(6):

(7) S' =V = —‘i‘:—:c((vL +20,)V 70,1 = —‘:—:(Vvaazl +2V72921)

Therefore we can reconstruct the vector field S’ in the plane z = constant,
given knowledge of 1, 4,1 and 9.1 in that plane.

Rather than reconstructing the vector field associated with the
unambiguous part of the energy flow, we are interested in recovering the
scalar phase of the wave. To this end, consider the two-dimensional
gradient of (6) :

®) Vop=-2Kvvior.
4w

Next, note from equations (23) to (25) of Chapter 3 that :
©) Vip(F) = 1(7)(Vas(F) + V x 6 (7).
Combining the previous two equations, we have :

) . ok V, V7l
(10) VL¢S(r)+[VX¢v(f)L ~ ‘(:_nl(—r)a
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Next, we take the two-dimensional divergence of (10) :

(1) V2gy(F)+ V. +[Vx§y(F)] = —%Vl «(1'v,v7,1).

Let us discard the rotational component (vector phase) in the second term of
(11), an excellent approximation when each monochromatic component in
the spectral decomposition of the paraxial field is continuous (ie. contains no
topological defects). Adopting this approximation, we may then write down
the following symbolic solution :

(12) 5 =-KVI[V, +(I'V,V70,1)].

This is the desired symbolic expression for obtaining the scalar phase of a
partially-coherent paraxial field with non-uniform illumination.

We are ready to proceed with numerical and experimental investigations
based on an implementation of (12) using which utilises the Fast Fourier
Transform.

4.4 PHASE RETRIEVAL WITH THE FAST FOURIER TRANSFORM

4.4.1 Phase retrieval algorithm'”

With a view to the computational implementation of (12), let us first write it
in the more convenient form :

W= k(v "0 Va1

(13) 4= a5 k(vfzaxl-laxvfz;azr

q)S =T ( 1 Vy y 'Ll z
This may be coded using Fast Fourier Transforms, because the derivative
and inverse Laplacian operators become multiplicative operators when
acting on the Fourier representation of a function'” :
(14) V?=-F kF , 9,=iF 'k F , d,=iF "k;F
Here, F denotes Fourier transformation, F ' denotes inverse Fourier

transformation, (k k) are the Fourier variables conjugate to (X,y), and
k? =k} +k;. (Note that the Fourier representation of the inverse Laplacian
in equation (14) is an example of the pseudo-differential operators discussed

in the appendix to chapter 2.) Bearing (14) in mind, the form of (13) which
was implemented computationally is given by :

19 This algorithm is covered by an Australian Provisional Patent, Determination of the phase of a
radiation wavefield, taken out in the names of David Paganin, Anton Barty and Keith Nugent (1998).
1" We use the Fourier-transform convention given in equation (22) of chapter 2.
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oW =F “k’kF I''F "kk’F [ko,I]
(15) ¢= q)(x) +¢(y)’ ) roohx x™r z )
¢ =F “k’k,F I'F "'k k’F [ko,I]

It is understood that in the implementation of (15) :

* One will only divide by the intensity if that intensity is greater than a
certain threshold value (eg. 0.1% of the maximum value) ;

* Division by k? does not take place at the point k, = 0 of Fourier space ;
instead we multiply by zero at this point. This is related to taking the

Cauchy principal value of the integral operator V™ (c/f equation (A3) in
the appendix to chapter 2).

The speed of the Fast Fourier transform, which may be further enhanced
with dedicated hardware, makes (15) an extremely rapid phase retrieval
algorithm.

4.4.2 Computer simulations using coherent illumination

Figure 1 gives an example of the action of this algorithm on simulated
noise-free coherent data. Diffraction patterns are calculated using the
angular-spectrum formalism outlined in article 2.3.3(a). Dimensions of all
images are 1.00 cm square = 256 x 256 pixels. The wavelength of the light
was taken to be 632.8 nm (HeNe laser), with defocus distance + 2 mm. The
intensity in the plane z = 0, which varies from O to 1 in arbitrary units, is
given in (a) ! Within the area of nonzero illumination, the minimum
intensity was 30% of the maximum intensity. (The black border around the
edge of the intensity image corresponds to zero intensity.) The input phase,
which varies from 0 to =, is shown in (b). The negatively and positively
defocused images are given in (¢) and (d) respectively, and have respective
maximum intensities of 1.60 and 1.75 arbitrary units ; the propagation-
induced phase contrast is clearly visible in each of these images. Such
propagation-induced phase contrast, well known to microscopists who use
defocus to qualitatively visualise phase information'”, is a simple
consequence of the local redirection of energy flow as the light passes
through the phase object. We see that this propagation-induced phase

! Figures 1(a) and 1(b) are courtesy of Public Domain Images, http://www.PDImages.com/.

172 See, for example, the opening sentence of F.Zernike, Phase contrast, a new method for the
microscopic observation of transparent objects, Physica 9 686-693 (1942). This reads, “Every
microscopist knows that transparent objects show light or dark contours under the microscope in different
ways varying with defocus...”. A mathematical formulation of this idea was given in H.Bremmer, On the
asymptotic evaluation of diffraction integrals with a special view to the theory of defocusing and optical
contrast, Physica 18 469-485 (1952). The final paragraph of Bremmer’s paper cites Zernike and gives
what is now called the “transport-of-intensity equation” for the case of uniform illumination, noting that
“This formula indicates how special features of an object at z = 0 which is invisible there ... become
visible for z = 0, an explanation of which has been given by Zernike.”
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