
Fermi Offline Software:
The Pros and Cons of Beg,

Borrow, and Steal

 Heather Kelly (SLAC)

Introduction
The Fermi Large Area Telescope (LAT) was
launched as part of the Fermi Gamma-ray
Space Telescope on June 11th 2008. The LAT
collaboration’s offline software includes:

GlastRelease: C++ Monte Carlo simulation
and data reconstruction software utilized as
part of the offline data processing pipeline
ScienceTools: all software related to
scientific analysis of Fermi LAT data written
in C++ with python interfaces

We are a relatively small collaboration with
a maximum of 25 developers in our heyday.
Our intent from the moment Fermi’s
proposal was accepted, was to provide one
code system for simulation, test data
analysis, and flight operations. During our
software development, we leveraged a
number of external libraries which include
ROOT, Gaudi, Geant4, CFITSIO, Swig,
Python, and Xerces. This helped to alleviate
the lack of manpower we had available to
get a system running quickly. We support a
community intent on running our software
on their personal laptops. This drove us to
provide binary distributions and simple GUIs
to aid source code compilation.
With six years ahead of us, we are in the
phase where we must move forward to
support modern operating systems and
compilers to get us through the life of the
mission. This means upgrading our external
libraries as well. We have a decreased labor
force, and it is crucial to our production
system that we carefully orchestrate all
upgrades to insure stability.

Stability versus
Development

Our data processing pipeline has been utilizing a
relatively stable version of GlastRelease since
launch. Some external upgrades, patches and bug
fixes have been allowed. We use CVS as our code
repository and branching to implement required
code changes to our stable releases.

Problem: There is little confidence in the use of
CVS branches across our development team.
Fix: We have one or two developers willing to
tackle the job of maintaining branches for
GlastRelease. For ScienceTools, branches are
avoided altogether in favor of rapidly applying
patches along the main trunk and rolling out new
tagged releases.
If our project was on a later timeline, we likely
would have moved to Subversion (SVN).

Problem: Stability is often favored over
introducing “unnecessary” patches, which can
result in improvements being passed over for
years at a time.
Fix: The development branch should keep up with
external library versions more diligently, as
jumping multiple versions when we do upgrade is
very painful.

Why Windows?
(and cygwin just won’t do)

We have a handful of proficient Windows
developers attached to the Visual Studio
development environment:
Integrated Debugger – go from error messages
to setting breakpoints in a couple of clicks.
Integrated Editor and Build Properties – allows
programmers to set compile and link settings
quickly and easily.

While we rely heavily on our remaining
Windows developers, it does come with a cost.
Free build tools like CMT and SCons, support
Visual Studio, however, they do not provide
fully functional solution files which our
developers demand for debugging. This
necessitated painstaking work to provide.
Unfortunately each version of Visual Studio
requires further customization. CMake may
have been an alternative, though we shied
away from its custom scripting language.

User Support
Our Online User Workbook, largely written by a
dedicated technical writer, has been a vital
component in supporting our distributed team of
users and developers across the LAT collaboration.
Unfortunately, we no longer fund a technical writer,
but the development team is working to keep the
content up-to-date.

Issues And Lessons Learned

• Using External libraries avoids re-inventing the wheel
CLHEP, ROOT, Geant4, Gaudi were all examples of code
we were much better off taking and using. All
supported both Windows and Linux (some also now
support Mac). We could then focus our efforts on tasks
specific to Fermi.
•Support for some OSes are better than others
Windows can be a bit of a problem. Many of the
externals we use now support CMake (CLHEP, G4,
ROOT), making this less of an issue.
•Use Externals sparingly – While external libraries can
offer a treasure trove of features and free code, it does
come with a cost. This is code you do not control. Your
ability to later upgrade operating systems or compilers
may be impacted by the externals you choose today.
•Pay attention to dependencies – Some externals
depend on other libraries. You may find that there are
conflicting versions required by various externals. At
best, upgrading one library, may force you to upgrade a
number of others due to these dependencies.
•Don’t wait too long to upgrade – When possible, it is
much better and easier to handle incremental upgrades
rather than jumping several versions at once.
•Make Friends – When you do utilize an external
library, find the experts associated with a particular
external and get to know them. You will have questions
and problems associated with that external someday,
and you need good resources to contact.
•Never make use of non-standard features – interfaces
change, and certainly over the long haul of a mission, if
you are taking advantage of some quirk in the code of
an external library, the rug will be pulled out from
under you.
•Be wary of your own free code– Our choice to adopt
an event display built using Fox and Ruby has proved to
be a maintenance issue due to the loss of both
developers associated with that project. We have
moved to Wired, which fortunately also uses the same
HepRep protocol.

heather@slac.stanford.edu

Proposal Phase 1998

• A handful of widely distributed developers
• Gismo C++ Monte Carlo
• Hard-wired coarse geometry description
• ASCII ntuple output
• Fully integrated Event Display
• Visual Source Safe code repository
• Windows-centric development

Nirvana

• Geant4 Monte Carlo
• Gaudi Framework
• XML detector definition for runtime geometry
• Full MC, detector, and reconstruction ROOT I/O
• ROOT ntuple contains summary data
• CVS repository
• Multi-platform

- Redhat Linux, Windows, (and Mac ScienceTools only)

• SCons build tool http://scons.org
- Migrating from CMT (Code Management Tool)

• One code system for simulation, test data
analysis, and flight operations.

• Event Display utilizing the HepRep protocol
• Automated Release Manager (RM)

- Provides binaries on all supported platforms

- Triggered by CVS tags

• Doxygen documentation generated via RM
• Online User Workbook

http://www.slac.stanford.edu/exp/glast/wb/prod

Early Adopters
Some of our primary external library choices
(Geant4, Gaudi, ROOT) were just achieving notice
when we picked them up. Those choices, while
risky at the time, have proven to be fruitful.

 http://geant4.cern.ch
The Good: Great online documentation
Large user community and well vetted code
Multi-platform, binaries available
The recent move to CMake is applauded.
Drawback: During our initial migration, it took
time to win over our whole team that this new
Geant was as accurate as Geant3 or Gismo. We
are often slow to upgrade this external.

 Gaudi http://proj-gaudi.web.cern.ch/proj-gaudi

The Good: C++ Framework which includes a
number of services out of the box:
Transient Data Store (TDS) – “shared” memory for data

Persistency Service
Messaging and logging
JobOptions service – runtime parameter handling

The primary flaw with our 1998 code, was poor
handling of data sharing. Migrating to Gaudi
achieved data and algorithm separation.
Drawback: Gaudi utilizes a large number of
external libraries; we have slightly customized the
source to avoid so many additional dependencies.

 ROOT http://root.cern.ch
The Good: Five Star Support, Online
Documentation and User Community
Modular – despite the growth of ROOT’s code base, we are

able to pick and choose. We primarily utilize ROOT’s I/O and
some of the math libraries such as TMinuit.

Drawback: complaints concerning the learning
curve to produce presentation quality plots, but
PyROOT provide a less daunting interface.

Not all Rosy…
Meanwhile, our choice of CMT (Code
Management Tool) allowed us to quickly support
both Windows and Linux.
Drawback: Windows support we hoped for did
not materialize. The original developer moved on
to other things and there was a period with very
little activity. Our solution was to freeze on an
early version and ultimately move to another build
tool: SCons. This endeavor has taken us a long
time to achieve, mostly due to our need for full
Windows Visual Studio support.

Communication Tools
At one time, we were a group of 25 developers
spread across 9 time zones. In 1998, our team
was spending money on teleconferences,
alternate forms of communication were
necessary:
JIRA - bug tracking
Confluence – Wiki tool
EVO - video conferencing
Instant Messaging, e-mail, and mailing lists

http://proj-gaudi.web.cern.ch/proj-gaudi
http://proj-gaudi.web.cern.ch/proj-gaudi
http://proj-gaudi.web.cern.ch/proj-gaudi
http://proj-gaudi.web.cern.ch/proj-gaudi
http://proj-gaudi.web.cern.ch/proj-gaudi
http://proj-gaudi.web.cern.ch/proj-gaudi

