Heavy Photon Data Acquisition Development

Presented by Ryan Herbst

PPA Engineering

Heavy Photon Data Acquisition

- ATCA based DAQ
- 10 readout boards interface to 12 hybrids each
- Each hybrid supports 5 APV25s
- Timing card to receive timing & buffer control information
- Multi port 10G switch card
- Linux based processor blade for data collection and distribution

PPA Engineering

ATCA Carrier On Board (COB)

3

- Being developed as generic data acquisition platform for multiple projects
 - Primary target is second generation RCE platform
 - ATLAS
 - LSST
 - Fits well into Heavy Photon DAQ proposal
- Supports 4 mezzanine cards
 - 10G Ethernet interface to back plane
 - 28 differential pairs routed to zone 3 connector
 - Generic lines to COB FPGA (timing, management, etc)
 - Timing signals to/from zone 2 connector
 - AMC form factor and IPMC management (TBD)
- On board 24 port Ethernet switch
 - 2 10G interfaces to each mezzanine card
 - 13 10G interfaces to zone 2 back plane connector
 - Dual star compatible
 - Full mesh compatible
- Local FPGA with embedded processor
 - Switch management
 - Board specific firmware
- IPMC & power distribution
- Schematic in progress

PPA Engineering

Readout Board - Rear Transition Module

5

Readout Board - Rear Transition Module

- Hybrids arranged in groups of 3
 - 15 ADC channels per group
 - Each group controlled by single FPGA on COB mezzanine
 - Clock, trigger & I2C buffering per group
- Signals from 3 hybrids brought in on DB89 connector
- Incoming signal centered around 1.25V reference terminated across 100ohms
 - Avoid negative supply voltage
 - Hybrid to drive centered around 1.25V
- Differential buffer with gain of 1.44 (replicated from ARC design)
- Differential ADC with 1.25V reference
 - One of eight channels
 - 40Mhz sample clock (supports up to 50Mhz)
 - 14-bit resolution, 280Mhz DDR data output
- Schematic completed, layout in January

PPA Engineering

Mezzanine Card

- Virtex 5 FPGA on custom mezzanine card
- Firmware UDP core for command/response and data transmission to ATCA processor blade
- Data reduction performed in firmware
 - Simple value over threshold comparison
 - 5 sample event accepted if any of 5 samples over software defined threshold
- I2C master for APV25 register access
- Clocks from COB passed down to hybrid boards
 - System clocks distributed on back plane
- Same board with different firmware used for timing card
 - Timing card will used a different RTM with the appropriate connectors

PPA Engineering