CXI ASICs calibration October 4, 2010 Mikhail Dubrovin

I. NEWS

- Account in PDF modulation of intensity along the azimuthal angle ϕ .
- Fits to separate rings and double rings, define an alignment parameters whenever possible.
- Combine all histograms in a single array.

II. PARAMETERIZATION

PDF for azimuth-uniform ring intensity is defined by the Gaussian distribution

$$\mathcal{P}(x, y|x_c, y_c, r_0, \sigma, A) = \frac{A}{\sqrt{2\pi\sigma}} e^{-\frac{(r-r_0)^2}{2\sigma^2}}$$
(1)

where $r = \sqrt{(x - x_c)^2 + (y - y_c)^2}$, (x_c, y_c) are the ring center coordinates, r_0 , σ , and A are the ring radial, Gaussian width, and amplitude parameters, respectively.

Azimuthal angle ϕ is extracted using **atan2** function,

$$\phi = \frac{180^{\circ}}{\pi} \operatorname{atan2}(y - y_c, x - x_c).$$
⁽²⁾

Thus extracted angle ϕ is defined in the range [-180°,180°]. Then, modulation of intensity along the ϕ is done as a 10-bin histogram in the range [ϕ_{\min} , ϕ_{\max}]. These azimuthal angle limits are defined in the configuration file for each ASIC.

III. RESULTS

See plots in Figs. 1 - ...

TABLE I: Fit results for single ring.

ASIC	Ring	x_c	y_c	r_0	σ	А
#	#		(arb. units)			
8	1	$217.06 {\pm} 0.02$	$292.49 {\pm} 0.06$	$180.87 {\pm} 0.05$	$1.9748 {\pm} 0.0004$	1482.2 ± 0.3
8	2	$215.07 {\pm} 0.07$	$293.72 {\pm} 0.13$	$214.77 {\pm} 0.15$	1.8426 ± 0.0024	409.2 ± 0.2
12	1	$22.178 {\pm} 0.004$	$297.3 {\pm} 0.0005$	180.87-fixed	$2.3321 {\pm} 0.0003$	$2030.0 {\pm} 0.3$
12	2	$33.500 {\pm} 0.006$	$286.50 {\pm} 0.02$	$202.94{\pm}0.02$	$1.7032 {\pm} 0.0006$	$808.1 {\pm} 0.2$
10	4	$387.34 {\pm} 0.03$	$289.65 {\pm} 0.05$	362-fixed	$4.69 {\pm} 0.01$	204.4 ± 0.3
10	3	$389.7 {\pm} 0.9$	$290.2{\pm}0.6$	$294.5 {\pm} 0.6$	$3.266 {\pm} 0.008$	$210.3 {\pm} 0.4$
13	3	$-157.60 {\pm} 0.03$	$268.01 {\pm} 0.02$	295-fixed	$2.538 {\pm} 0.003$	$299.2 {\pm} 0.3$
13	4	-125.276 ± 0.002	$303.2 {\pm} 0.004$	362-fixed	$1.3704 {\pm} 0.0003$	$1305.7 {\pm} 0.2$
9	4	$208.4 {\pm} 0.8$	462.1 ± 1.9	$361.3 {\pm} 2.0$	$4.84 {\pm} 0.02$	$114.6 {\pm} 0.4$
9	4	219.5-fixed	495.1-fixed	395.55 ± 0.01	$4.297 {\pm} 0.016$	115.1-modul.
14	4	$40.87 {\pm} 0.08$	$487.94{\pm}0.02$	362-fixed	$2.355 {\pm} 0.009$	$136.3 {\pm} 0.3$

ASIC	Ring	x_c	y_c	r_0	σ	А
#	#		(arb. units)			
8	1	$218.27 {\pm} 0.02$	$297.22 {\pm} 0.03$	$185.73 {\pm} 0.03$	$1.9690 {\pm} 0.0004$	$1473.7 {\pm} 0.3$
	2			$219.30 {\pm} 0.03$	$1.880 {\pm} 0.001$	$411.8 {\pm} 0.2$
12	1	$27.355 {\pm} 0.002$	$302.7 {\pm} 0.0004$	$185.89 {\pm} 0.0004$	$2.3144{\pm}0.0003$	$1958.8 {\pm} 0.3$
	2			$218.97 {\pm} 0.0001$	$1.9044{\pm}0.0006$	$838.7 {\pm} 0.2$

TABLE II: Fit results for double rings using uniform over ϕ PDF.

TABLE III: Fit results using modulated over ϕ PDF.

ASIC	Ring	x_c	y_c	r_0	σ	А
#	#	(in pixels)			(arb. units)	
8	1	$219.56{\pm}2\text{e-}5$	$297.07 \pm 2e-5$	$185.83 \pm 2e-4$	$1.8976 {\pm} 0.0002$	$1536.8 {\pm} 0.1$
	2			$219.97 \pm 8e-4$	$1.876 {\pm} 0.0008$	$418.4{\pm}0.2$
12	1	$27.609{\pm}2\text{e-}5$	$302.7 \pm 3e-5$	$185.96 {\pm} 0.0002$	$2.2758 {\pm} 0.0002$	$1936.7 {\pm} 0.2$
	2			$218.83 {\pm} 0.0004$	$1.7533 {\pm} 0.0004$	$824.9 {\pm} 0.2$
9	4	219.56 fixed	297.07 + 194 + 4-fixed	$395.55 {\pm} 0.01$	$4.297 {\pm} 0.016$	115-modul.
				single ring fit		
10	3	$414.1 \pm 3e-5$	$311.2 \pm 2e-5$	$326.581 {\pm} 0.004$	$2.804{\pm}0.003$	$188.1 {\pm} 0.2$
	4			395.6-fixed	$4.456 {\pm} 0.007$	$202.9 {\pm} 0.3$

FIG. 1: r0547-s00-asic08, event 51: fit to the rings 1 and 2 with unifom in ϕ PDF.

FIG. 2: r0547-s00-asic08, event 51: $r - \phi$ projections.

FIG. 3: r0547-s00-asic12, event 51: fit to the single rings 1 and 2 with modulated in ϕ PDF.

FIG. 4: r0547-s00-asic07, event 51, background is subtracted.

FIG. 5: r0547-s00, event 51, combined histogram array.

IV. CONFIGURATION PARAMETERS

А	SIC	orientation (o	x_c (pixel)	y_c (pixel)
(00	0	10	733+gap
(01	0	10	733
(02	0	-189	713+gap
(03	0	-189	713
(04	270	224+gap	713
(05	270	224	713
(06	270	214+gap	908
(07	270	214	908
(08	180	219.6	297
(09	180	219.6	297+gap
	10	180	414.1	311.2
	11	180	414.1	311.2+gap
	12	270	27.6	302.7
	13	270	27.6-gap	302.7
	14	270	5	510
	15	270	5-gap	510

TABLE IV: Configuration parameters. gap = 194+4 (pixel).

```
double ring1R = 185.9; // 1) from averaged asic 8,12
double ring2R = 219.4; // 1) from averaged 8,12
double ring3R = 326.5;
double ring4R = 395.6; // 2) from fit to asic 9 with fixed Xc,Yc
double ring5R = 498;
double ring6R = 558;
double ring7R = 578;
double ring8R = 650;
double ring9R = 810;
```