
Introduction to
real-time

programming concepts

W. Eric Norum
June 24, 2010

What is a real-time
system?

• “One in which the timeliness of the results
is as important as the value”

• “One which must provide its results within
certain deadlines”

• These don’t really nail it down very well.....

• Is a payroll system “real-time”?

What is a real-time
system?

• “I shall not today attempt further to define the kinds of material I
understand to be embraced within that shorthand description and perhaps I
could never succeed in intelligibly doing so.

But I know it when I see it.....”

 — Justice Potter Stewart,

 concurring opinion in Jacobellis v. Ohio 378 U.S. 184 (1964)

• Justice Stewart was talking about something different, but his approach might
be reasonable.

Real-time system
classifications

• Hard real-time systems - Failure to meet response-time
constraints results in system failure.

• Soft real-time systems - Performance is degraded, but
not destroyed by failure to meet response-time
constraints.

• Firm real-time systems - Systems with hard deadlines
where some low probability of missing a deadline can be
tolerated.

What characterizes a real-
time OS or executive?

• Deterministic response to external stimuli
(interrupts)

• No long ‘tails’ in response histogram

And how’s that done?

• Interrupts disabled for as little time as
possible

• Interrupt handlers as short as possible

• Predictable scheduling

• In extreme cases can even do things like
disabling memory caching – all to ensure
deterministic response

Real-time Kernel
Hierarchy

• Nano-kernel Task dispatching only

• Micro-kernel Task scheduling

• Kernel Intertask communication

• Executive

• Adds I/O services, network services

• Operating System

• Generalized user interface, file management, security

Scheduling

• Multi-processer vs. Multi-process vs. Multi-
threaded

• Fair-share

• Strict Priority Based

• Rate Monotonic

• Round Robin

Task States

• Executing

• Ready

• Blocked (waiting for some condition)

• Dormant (created but not net started)

• Non-existent

Task States

Task Synchronization

• Events

• Semaphores

• Message Queues

Events

• A task can wait for an event, or group of
events, to arrive

• Events are sent to a particular task – the
sender must know the task ID of the
receiver

• Handy for simple synchronization case like
waiting for an interrupt

Semaphores

• Control access to a common resource

• A counter that can be atomically
incremented or decremented – but never
goes below zero

• Example – a restaurant

Semaphore options

• Counting/binary

• Queuing – priority or first-come, first
served

• Recursive or not?

Mutual Exclusion
• Useful for

• Piece of code that can be active in only one
task at a time

• Access to a resource (for example an I/O
device) by just one thread at a time

• Implement as semaphore with initial count = 1

• Issues

• Priority inversion

• Deadlock

Priority Inversion

• Three tasks

• A (high priority)

• B (middle priority)

• C (low priority)

• Resource shared by A and C

• Protected by a Mutex Semaphore

Priority Inversion

• A and B have blocked so C is able to run

• C acquires the mutex

• B becomes runnable and so preempts C

• A becomes runnable and attempts to acquire the
mutex – but blocks because C holds it

• B runs – so C has no opportunity to release mutex

Priority Inversion

• Even though B has nothing to do with the
mutex it is preventing A from obtaining it

• Priority of A and B have effectively inverted

• A may be held blocked for too long

• c.f. Mars Pathfinder

Priority Inheritance

• One way of mitigating the problem

• When a higher-priority task attempts to obtain
a mutex any task holding the mutex has its
priority raised to that of the requesting task

• The task holding the mutex ‘inherits’ a higher
priority

Priority Inheritance

• Same system (A, B, C) but with inheritance

• This time when A attempts to obtain the mutex
the priority of C is raised to that of A – so C is
the highest-priority runnable task and runs until
it releases the mutex

• The priority of C then reverts to its original
value and A becomes the highest-priority
runnable task and is able to obtain the mutex

Priority Inheritance

• With more tasks and priorities the possibilities
become more complex (inherit priority, then
inherit even higher priority, then back to first
inherited priority and then back to original
priority) but RTEMS takes care of all this for you

Deadlock
• Consider a system with two tasks A and B and

two mutexes MA and MB

• A takes mutex MA

• B takes mutex MB

• A attempts to take mutex MB – and blocks

• B attempts to take mutex MA – DEADLOCK!

• Neither A nor B can run

Deadlock Mitigation

• Don’t nest mutex requests – i.e. don’t request a
mutex while holding another mutex

• Not always easy to do but certainly the safest

• Example is the EPICS ASYN package – a
callback to user code is never made while a
mutex is held

Deadlock Mitigation

• If you must nest requests always request them
in the same order

• The deadlock described earlier occurs only
because A requests MA and then MB and B
requests MB and then MA

Message Queues
• FIFO buffer

• Maximum message size and number set
when queue is created

• Receiver can block waiting for message

• What happens when attempting to place a
message on a queue that is full?

• Block?

• not a good idea in an interrupt handler

• Return error?

Interrupts

• Specify function that is to be invoked when
a particular interrupt occurs

• Function is passed a value which is often
used to hold a pointer to a data structure
containing a task ID or message queue ID
or such like

• Must not call any routine that would block!

Simple I/O

• Memory mapped

• C ‘volatile’ keyword

• Useful to use function/macro

I/O

• Bad version

void pulsePin(uint16_t *ioreg)

{

 *ioreg = 1;

 *ioreg = 0;

}

I/O

• Better version

void pulsePin(volatile uint16_t *ioreg)

{

 *ioreg = 1;

 *ioreg = 0;

}

I/O

• Best version

void pulsePin(uint16_t *ioreg)

{

 out_be16(ioreg, 1);

 out_be16(ioreg, 0);

}

‘volatile’ and busy loops
• Another way that things can break

int16_t *csr; while ((*csr & 0x80) == 0);

• Gets ‘optimised’ to:

if ((*csr & 0x80) == 0) { while(1); }

• Adding ‘volatile’ fixes this (but it’s still not a good
thing to do):

• Should have upper bound on number of loops
and return error if hardware never comes ready

• Busy loops tie up the CPU and lock out lower
priority tasks

‘volatile’ and shared
memory

• Needed when variables are accessed by
multiple threads (shared memory)

• Likely need a mutex as well

• ‘Obviously atomic’ operations aren’t
necessarily so. Even simple assignments can
be split up into multiple instructions on some
architectures – what happens if you get an
interrupt and task switch in the middle?

‘volatile’ and interrupt
handlers

• Needed when variables are accessed by
thread(s) and interrupt handler

• Need to think very carefully about where
interrupt disable/enable directives are
required

• The ‘atomic’ operation problem is even
trickier here

• If at all possible, just have interrupt handler
unblock a thread to do the real work

RTEMS

• Open-source, real-time executive

• ‘Super Core’ with multiple APIs

• ‘Classic’

• POSIX

• ITRON (moribund)

• BSD network stack, NFS

• Multiprocessor capable (but not SMP -- yet)

RTEMS Objects

• RTEMS provides a set of predefined objects

• Tasks, message queues, semaphores, timers,
memory regions

• Unique ID

• Arbitrary name

RTEMS Time

• ‘Tick’ based

• Defines granularity of interval and calendar
operations

• Some external mechanism provides the
periodic clock tick

RTEMS Task Manager

• Priorities1 (highest) to 255 (lowest)

• Preemptible?

• Time slicing?

• Floating point?

• Stack size

RTEMS Task Directives

• rtems_task_create

• rtems_task_start

• rtems_task_wake_after

• rtems_task_wake_when

RTEMS Task Directives

• Some risky ones

• rtems_task_suspend

• rtems_task_resume

• rtems_task_restart

• rtems_task_delete

RTEMS Task Creation
• rtems_status_code rtems_task_create(

rtems_name name,

rtems_task_priority initial_priority,

size_t stack_size,

rtems_mode initial_mode,

rtems_attribute attribute_set,

rtems_id *id

);

• Attributes (local/global, floating-point)

• Modes (RTEMS_PREEMPT, RTEMS_TIMESLICE, etc.)

RTEMS Task Start

• rtems_status_code rtems_task_start(

rtems_id! id,

rtems_task_entry! entry_point,

rtems_task_argument argument);

• ʻargumentʼ is commonly a pointer to a data structure holding per-task
values

RTEMS Semaphore
Creation

• rtems_status_code rtems_semaphore_create(

rtems_name name,

uint32_t count,

rtems_attribute attribute_set,

rtems_task_priority priority_ceiling,

rtems_id *id);

• Attributes (FIFO/Priority, Binary/Counting/Simple, Inherit priority or not,
implement priority ceiling or not, local/global)

RTEMS Semaphore
Creation

• Attributes for a mutual-exclusion (Mutex) sempahore:

RTEMS_PRIORITY |

RTEMS_BINARY_SEMAPHORE |

RTEMS_INHERIT_PRIORITY |

RTEMS_NO_PRIORITY_CEILING |

RTEMS_LOCAL

RTEMS Semaphore
Attributes

RTEMS Semaphore
Acquisition

• rtems_status_code rtems_semaphore_obtain(

rtems_id id,

rtems_option option_set,

rtems_interval timeout);

• option_set can be RTEMS_WAIT or RTEMS_NOWAIT

• timeout in clock ticks or RTEMS_NO_TIMEOUT to wait ‘forever’

• Release: rtems_status_code rtems_semaphore_release(rtems_id id);

RTEMS Events

• 32 possible events

• Sent to a particular task

• Task can wait (with optional timeout) for
any or all events in a set to arrive

RTEMS Status Codes

• All RTEMS directives return an value with
type rtems_status_code

• The routine rtems_status_text takes an
rtems_status_code value as an argument
and returns a pointer to a character string
describing the value

RTEMS Status Codes

• Example
somefunc(...)

{

 rtems_status_code status;

 status = rtems_task_create(.....);

 if (status != RTEMS_SUCCESSFUL) {

 fprintf(stderr, “Can’t create task: %s\n”, rtems_status_text(status));

 }

RTEMS Object Names

• In the ‘classic’ API object names are
arbitrary 32-bit values

• The macro rtems_build_name(c3,c2,c1,c0)
packs four characters into a single 32-bit
value:

rtems_task_create(rtems_build_name(‘t’, ‘s’, ‘k’, ‘A’), ...

RTEMS Web Site

• http://www.rtems.org

• Links to downloadable code

• Links to complete documentation

http://www.rtems.org
http://www.rtems.org

