EPICS |

|0 March 2008

Basic Architecture

*|OC (Input Output Controller)
*This is the server; at least one required

*Real-time system that defines the Application
*Traditionally aVME or cPCl crate (hard); can also be any PC/OS (soft)

*OPI (Operator Interface)
*Workstation/PC with traditional OS (but could be diskless)
*Runs EPICS clients

*SRV (Server)

*Where Applications are built and loaded from
*Can be file server for OPI clients
*Can be archival repository

A Lo P.
e | [l

Basic Architecture

e Architecture is ‘Flat’
eData moves peer-to-peer (no copy/no relay)
*No central services; uses a ‘discovery’ protocol
*No single-point-of-failure
*All entities are independent
*Clients and servers can be started and stopped in any order
*Minor versions and be mixed (3.x with 3.y)

*Network
*Basic system runs on LAN
*Gateways, switches, and routers can join LANs over WANs

-, Wmo

|OC: Basic Components

*EPICS Core (‘iocCore’; 'base’)

eShared (re-entrant) code for records
*Channel Access server and client

*Application Database
eInstances of record types, possibly linked

*Device/Driver Support
*Device- and bus-specific code
LAN

EPICS Core

Field buses

|OC: Components

A

A 4

Channel

Scanners

4

N

Access e
|v\
/'

Monitors

Database Access

\ 4

Sequencer

\ 4

Interrupt SRs

A

Database

\ 4

Record Support

Device Support

Field buses

LAN

|OC: Components

*The Database and the Sequencer are the Application
eSequencer is a true client

*Channel Access (CA) is the only external entry point

*Record-/Device-/Driver-Support/Scanners provided to
Application Developer

The Database is the Heart of EPICS

Channel Access is the Backbone of EPICS

The 10C Developer’s Guide is the primary reference

|OC: Components

*Database (DB)

*Memory-resident collection of ‘function-blocks’ (aka ‘records’)
*eComposed/Aggregated (‘linked’) to form combinatorial explosion
of new functionality

eLinkage mechanism ‘transparent’
*Deterministic; runs synchronously or asynchronously; periodically
or even-driven
*Has fine-grained Access Control
*Provides Simulation and Tracing

*Has textual and graphical representation (using VDCT)
*This is main effort for Application Developer
eSupports a rich variety of instantiation and macro substitution facilities

The fundamental job of the Application
Developer is to instantiate and link records into
the right processing ‘chains’

|OC: Components

*Record Support

*Provides functionality for record types
*Processing is what records ‘do’
*|/O records use Device Support for hardware access

*|/O records perform scaling, smoothing, masking, shifting,
linearization, etc

*Performs limit checking and raises alarms

*Triggers monitors (callbacks)

*‘Pulls’ or ‘pushes’ (or monitors) data via Links
*Can link to records on other IOCs via Channel Access (ie,an IOC is also
a client)

|OC: Components

*Record Types

*|/O types
*Analog IN/OUT (ADC, DAC)
*Binary IN/OUT (TTL, relay, ...)
*Long IN/OUT (Counter, Timer, Scalar)
*Motor
String IN/OUT (TCP/IP, RS-232, GPIB, ...
*Waveform (Digitizer, camera, ...)
eSecondary processing types
*Calculation
*Escape-to-C subroutine
*Proportional-Integral-Derivative (feedback)
*Transform

|OC: Components

*Record Types

eData Storage types
eCompression
*Histogram
eSubArray
oState
eControl
*Data Fanout
*Control Fanout
*Event
*Select
*Sequence
*Scan

*Wait

The Record Reference Manual and other
documents provide details

|OC: Components

*Record Fields
A record’s attributes are held in its fields. A field name is a 3- or 4-character

abbreviation. Each field of a record (also called a Process Variable, or PV) is a
Channel.

All records ‘inherit’ a core set of fields:
*NAME—the only way CA clients can find it
*DESC—a free-form description
*VAL —the quantity (‘value’) of interest
*FLNK—forward processing to another record

Other records have more specific fields:
*DTYP—device type for I/O records
*INP —input parameters for I/O records
*OUT —output parameters for |/O records

|OC: Components

*Device Support

e[solates Record Support from hardware details
*New devices use can old records
*Optionally uses Driver Support

*‘Soft’ types (available for most records) provide place-holders for
simulation, client persistence, ‘global’ items, etc

*Driver Support
*Used typically for non-trivial low-level bus 1/O, wire protocols, etc
*Not EPICS-specific (but usually bus-specific and often OS-specific)

A large repertoire of Device and Driver routines
are shared by the EPICS community

|OC: Components

*Scanners
*These are the active threads that call the working records’ code
*Every record has a one of these scanning types specified:
*Periodic
*A (modifiable) selection of rates, typically 10 Hz to | minute
*Event

*One of 255 ‘soft’ events, via other records or Channel Access

*Via hardware interrupt (I/O complete)
eSupports asynchronous I/O with appropriate Driver Support

ePassive

*Invoked by ‘push’, ‘pull’, or ‘forward’ link from another record
*Invoked by Channel Access ‘put’

Selecting the best scanning option for each record
is the ‘art’ of configuring an EPICS database; and
often many equivalent solutions exist

|OC: Components

*Channel Access (CA)

e[t is the only portal between external entities and the database
*Even a co-resident Sequencer is a ‘pure’ CA client
o[t is fundamentally a publish/subscribe paradigm

*Based on TCP/IP
*TCP for data transport
*UDP for connection management
*Basic Operations
Search and Connect to a Channel’
*Write to that Channel (‘put’)
*Read from that Channel (‘get’)
*Monitor (await callback from) that Channel
*Disconnect from that Channel

"A Channel is defined as:

“<record name>.<field name>"

|OC: Components

eChannel Access...

*Read and Monitor return:
*Value requested
*Time-stamp
Status (read/write/access/undefined/...)
*Severity (normal/minor/major/undefined)
eHard and Soft IOCs contain both client and server

*OPI tools use only client

|OC: other

e Autosave

*Implements ‘warm reboot’
*Saves changed values (‘set-points’) back to server
*Restores them after reboot
*Developer supplies a list of PVs

eConsole access

*‘Debug’ serial port on all IOCs wired to Terminal Server
*Can watch start-up script
*Can run CA, Sequencer, DB diagnostics

*VME Remote crate control

*Control/Monitor power, voltages, temperatures
*‘Hard’ and ‘Soft’ reset when even Console access fails

*|OC self-monitoring
*heart-beat, time-of-day, resource loading

Sequencer

Implements a true Finite-State Machine (FSM), with some Harel extensions. Source code is
written in the State Notation Language (SNL) which is compiled into C by the EPICS build
system. (Channel Access and Connection Management is part of SNL.) A Sequencer program
is a collection of communicating ‘state sets’, each of which has states and transitions.

Whereas the Database is optimum for combinatorial solutions, the Sequencer is best for
time-dependent solutions.

State transitions are triggered by any combination of: elapsed time; channel change; channel
value; and software event.

SNL code is re-entrant and supports multiple instantiation with macro substitution.
Inspection of running sequences is provided. It runs directly on an IOC and also on any OPI
or SRV host.

State A{
when(X) {
do Y;
} State B;

Client Tools

*All of these allow drag-and-drop of PV names between them

ecaget and caput from command line
*Quick sanity check on all of the following...
*Probe
*Single PV GUI-style diagnostic; handy monitor/adjust functions
*Extensible Display Manager (EDM)
*Implements ‘soft’ control panels for typical devices
*Drag-and-drop from palette of appropriate widgets
*Only PV names required
*Excellent macro substitution facility
*Pre-built screens for all known devices
StripTool
*Multi-channel emulation of paper strip-chart recorder

eAlarm Handler (ALH)

*Provides a hierarchy to drill down to ‘first-fault’
*Can invoke EDM screens, dial pagers, call processes, give help
*Excellent macro substitution facility

Client Tools

eChannel Access is available as library or plug-in for
*Matlab
oC/C++
*Python
*Mathematica
*Java
*Perl
eLabView
*Unix/Linux shells

