

Filename: avgr_reg_descrip_v3.doc Page 1 of 14 J. Dusatko / SLAC-ACD-EE

Stanford Linear Accelerator Center

Accelerator Controls Department

Electronic Systems Engineering

Hytec IP-ADC-8413
Data Averager Modification

Register Description

Version 3.0

Author: John Dusatko

July 31, 2007

Filename: avgr_reg_descrip_v3.doc Page 2 of 14 J. Dusatko / SLAC-ACD-EE

Hytec IP-ADC-8413
Data Averager Register Description

Introduction:
This document describes the registers and sequence of operations required to support the added Data Averager
feature of the Hytec model IP-ADC-8413 16-bit, 16-channel Industry Pack Analog to Digital Converter (ADC)
module. It gives a brief overview of the averager function and provides descriptions of the modified and/or added
board registers that control this feature and read out its results. Finally the sequence of register operations is given to
guide the programmer in developing code. Note that in this document all additions and changes having to do with
the Data Averager are highlighted in BLUE.

Description of the averager:
In order to provide a rudimentary level of signal processing with the purpose of improving signal-to-noise
performance while reducing random noise, a data averaging function was added to the IP-ADC-8413. This is a
gateware modification to the board’s FPGA. A simplified block diagram of the board is shown below.

This block diagram shows the overall board and where the data averager fits into it. The averager, as it is currently
designed, performs the following operation:

∑
=

=
64

1
)(

64
1)(

n
sampleVaverageV

Where V(average) is the averaged ADC voltage value and V(sample) is the raw ADC sample value. In the above
relation, 64 successive ADC values are summed. This sum is then divided by 64 to give the average value. The
number of averaged samples, 64, gives a coherent averaging gain of 18dB. The averager, outlined in blue in the
block diagram, implements the above equation. It operates on all sixteen ADC channels, with the sum being
accumulated with each ADC sample. Note that the accumulation rate is equal to the ADC sampling rate, which is set
by either an external clock or the internal clock. The internal clock is controlled by register 0x06, the Internal Clock
Rate Register. In order to provide 60Hz rejection, this clock must be set to acquire 64 samples over a period of 1/60th

Filename: avgr_reg_descrip_v3.doc Page 3 of 14 J. Dusatko / SLAC-ACD-EE

of a second. This corresponds to a 3.8KHz sample rate. The board’s hardware and FPGA gateware has been
modified to support this rate.

Averager Operation:
The averager functions as follows: In looking at the block diagram, the sixteen ADCs output a serial datastream that
is input to the FPGA. The FPGA contains a deserializer that converts the sixteen 16-bit serial data streams into
sixteen two’s compliment format data words. These values are stored in holding registers. Normally, the data in the
holding registers can be read out directly (by reading the ADC Data Registers) and/or be loaded into the external and
internal FIFOs. The data averager unit is connected to these holding registers.

After the ADCs have acquired a sample, the data is read into the de-serializer and then stored into the FIFOs. When
this is finished, the averager block then reads out the holding registers again and adds each channel’s data value with
an accumulated sum that has been previously stored in the averager’s internal memory. The averager has internal
counters to keep track of how many samples have been stored and which channel is which. The averager’s internal
memory can be thought of as having sixteen separate slots where the accumulated sums for each channel are stored.
When all 64 samples have been accumulated for each channel, the averager’s internal control logic performs a
divide operation for each channel to arrive at the averaged value.

The averager itself is divided into three functional sections: the master controller, the accumulator and the divider.
Each subsection is controlled by a state machine. The master controller interfaces to the rest of the IP-ADC-8413
logic. It is controlled by bits set in the auxiliary control register. The whole design is contained in two VHDL files
which are dropped into the main FPGA design.

Note that the averager operates sequentially on all sixteen channels. Therefore a necessary time delay is incurred.
The averager logic runs at the IP clock rate (8MHz or 32MHz) so ample margin is available to complete all the
necessary operations.

There are two modes that can be used to read out the averaged data:

Polling Mode:
When all 16 channels have been completed, the averager signals the computer that new data values are ready by
setting a done bit in the auxiliary control register. It is the responsibility of the control software to poll this bit to
know when the averaged data is ready to be read out. In addition, a handshake mechanism exists that holds off the
collection and averaging of new ADC samples until the current averages are read out.

The 8413 is placed into acquisition mode and the averager is enabled. A status bit in the ACR is polled to tell when
averaged data is available. When it is, averaging is halted and the results are ready for readout. After the data has
been read out, and ACR bit it toggled to resume averaging and the status bit is again polled to indicated when new
data is ready for readout. This sequence of operations repeats for each set of averaged data.

SAM Readout Mode:

This mode emulates the data readout mode of the SLAC VME Smart Analog Monitor (VSAM) module. In
this mode, the averaged data results are automatically written and made available for external readout without the
need for handshake/polling bits. This is done using a simple double-buffer configuration with one buffer containing
the latest averaged values for readout while the other buffer accumulates the next averaged values. When
accumulation of the new averages is complete, the buffers are automatically swapped so that the new results can be
read out, while the previous values get over written with the latest accumulated samples to be averaged. This sort of
ping-pong action occurs automatically ensuring that the most recent data is available to the CPU when it reads out
the ADC module. The eliminates the need to have polling bits or an interrupt mechanism (not implemented here) to
indicate when data is ready. This is done with the slight risk of missing data either too early (stale data) or too late
(missed group of averages) depending on how fast the CPU can read out the ADC module. For most applications, it

Filename: avgr_reg_descrip_v3.doc Page 4 of 14 J. Dusatko / SLAC-ACD-EE

is assumed that either the CPU is fast enough and/or missing a set of averages will not have a negative effect. When
SAM mode is disabled, only one buffer is used for readout; which is transparent to the user.

SAM readout mode is enabled by setting the Auxillary Control Register (ACR) SAM bit = 1. Note that SAM
Readout Mode is only available when the data averager feature is enabled and does not apply to normal (non-
averaged) data collection.

The SAM readout controller incorporates an arbitration mechanism that holds off the buffer swap if a VME (IP bus)
readout is in progress. Once the readout is complete, the swap occurs. The holdoff method is simply a time delay
that prevents the swap from happening for a fixed duration. As soon as an external access is detected, a swap inhibit
is asserted and a delay counter is started. When the delay counter is exhausted, the swap inhibit is de-asserted, and
the swap occurs. The length of the delay is equal to the calculated time it takes for a series of 18 consecutive IP bus
read cycles to occur plus a safety margin. This equates to 256 counts of the IP bus clock which is equal to a 25us
delay for an 8MHz clock and 6us for a 32MHz clock.

Note that when in SAM mode, writes to the ADN bit, which is required for polling mode are not needed and have no
effect.

Detailed Description:
 The SAM readout controller is simply a state machine and support logic that implements an arbiter and
control mechanism for selecting which region of the Averager's dual-port RAM memory to read out, and which to
have the averager accumulate its results into. The VME readout has precedence. This module interfaces to the
averager's master state machine and dual-port ram. The module functions as follows: when enabled via the SAM
Mode Enable (SAM) bit and the averager enable (AEN) bit, the averager selects buffer A for accumulation and
buffer B for readout. The controller waits for the averager to signal that new avg'd data is ready. The SAM contoller
then checks to see if a VME access is in progress to buffer B. If there is, it waits until that access is done before
proceeding to swap the buffers and signal the Averager that it can proceed with a new averaging cycle. The SAM
controller state machine waits for the Averager’s state machine to signal that it has started a new avg cycle (by de-
asserting the av_drdy signal) before it de-asserts the drd_done_s signal, thus completing the handshake. This ping-
pong action continues as long as the averager and the SAM mode controller are enabled. Note that there is a
selection mux in the Averager that selects the source of the Averager’s Master State Machine drd_done signal from

Filename: avgr_reg_descrip_v3.doc Page 5 of 14 J. Dusatko / SLAC-ACD-EE

either the Aux Ctrl Reg ACSR bit or the Sam Mode Controller (which is driven by the AND of the sam_mode and
avgr mode enable signals). In addition, when SAM mode is disabled, the data buffers select only buffer A for both
sides of the averager so that it can operate in polling mode. The VME active signal is generated by the logical OR of
the ADC channel read bus strobe bits. This OR’d signal feeds a counter that generates a hold off gate signal for a
fixed period of time. This period of time has been chosen to equal the total amount of time it would take to readout
out all 18 channels using standard VME read cycles, which are estimated to take approximately 256 IP bus clock
counts.

Filename: avgr_reg_descrip_v3.doc Page 6 of 14 J. Dusatko / SLAC-ACD-EE

Registers Changed in SLAC version of IP-ADC-8413:
Three main sets of registers that have been changed. These are the eighteen ADC data registers, the Auxillary
Control Register (ACR) and the Internal ADC Clock Rate register. These changes are illustrated in the following
sections.

ADC Data Registers:

In normal operating mode, these registers contain the most recently converted ADC value for all sixteen input
channels. When the aux control register’s ADC Readout Select (ARS) bit is set to a logic one, these registers contain
the averaged data values. These values are valid when the aux control register’s AVG_DONE bit is set high. Note
that in both cases, the data format can be selected to be either straight binary or two’s compliment depending upon
the value of the 2C bit in the Auxiliary Control Register.

Normal Mode:
Read Address: [0x10 – 0x32]
The first sixteen ADC buffer registers store the last sample conversions and may be read at any time. The
seventeenth is used to monitor the 0V reference and the eighteenth is used to monitor the 2.5V reference.

Register Address (Hex) Description Register Address (Hex) Description
10 ADC 0 22 ADC 9
12 ADC 1 24 ADC 10
14 ADC 2 26 ADC 11
16 ADC 3 28 ADC 12
18 ADC 4 2A ADC13
1A ADC 5 2C ADC 14
1C ADC 6 2E ADC 15
1E ADC 7 30 0V Reference
20 ADC 8 32 2.5V Reference

Average Mode:
Read Address: [0x10 – 0x32]
The first sixteen ADC buffer registers contain the respective ADC channel’s averaged data value. The seventeenth
and eighteenth channels are not defined in this mode.

Register Address (Hex) Description Register Address (Hex) Description
10 ADC 0 Average 22 ADC 9 Average
12 ADC 1 Average 24 ADC 10 Average
14 ADC 2 Average 26 ADC 11 Average
16 ADC 3 Average 28 ADC 12 Average
18 ADC 4 Average 2A ADC13 Average
1A ADC 5 Average 2C ADC 14 Average
1C ADC 6 Average 2E ADC 15 Average
1E ADC 7 Average 30 xxxx
20 ADC 8 Average 32 xxxx

Filename: avgr_reg_descrip_v3.doc Page 7 of 14 J. Dusatko / SLAC-ACD-EE

Auxiliary Control Register (ACR):
This register is reset to all zeros at power-up and must be set for correct operation

Control
Read/write Address: 0x34

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

X X X X SAM AINI ARS A/B AEN PG2 PG1 PG0 2C N/S X RGE

The following bits are described in the Hytec IP-ADC-8413 User manual:

Bit 0 RGE Sets the range of the ADCs. 0 - +/- 10V and 1 - +/-5V.
Bit 2 N/S 0 – Standby Mode, 1 – Normal Operation.
Bit 3 2C 0 – ADC Values in 2’s Complement (default), 1 – ADC Values 0000 (Neg FS)-FFFF
(Pos FS).
Bit 4 PG0 Bit 0 of ID PROM Paging.*
Bit 5 PG1 Bit 1 of ID PROM Paging.*
Bit 6 PG2 Bit 2 of ID PROM Paging.*

The following bits have been added for the Data Averager function:

AEN Bit(s): [7]
Read/Write

Averager ENable: Enables the data averager subsystem. When enabled, 64 successive samples will be
summed and divided by 64. The results are then stored in the ADC Data Registers. Note that when enabled,
the averaging started as soon as the next ADC sample clock occurs as long as the ADC has been set to
normal operation, is ARMed and receives the appropriate trigger.

 0 = not enabled
 1 = enabled

ADN/BUF (A/B) Bit(s): [8]
Note: This bit is a dual-mode type, set by the state of the SAM mode bit. The descriptions follow:

Polling Mode (SAM = 0)

ADN Bit(s): [8]
Read/Write – Special!

Averager DoNe: This bit indicates when the average operation has been completed and valid
averaged data is present in the ADC Readout Registers (Regs 0x10 – 0x30). Note that this is a
dual-use bit. In read mode, it indicates done status, in write mode writing a one tells the averager
subsystem that its last results have been read out and that it can now resume averaging the next set
of 64 samples. When SAM Readout Mode is enabled, writing to this bit has no effect.

 Read:

 0 = averaging not done
 1 = averaging done

Write:

Filename: avgr_reg_descrip_v3.doc Page 8 of 14 J. Dusatko / SLAC-ACD-EE

 0 = no action
1 = Readout complete, start averaging the next set of samples / this bit must be cleared to
zero

SAM Mode (SAM = 1)
BUF Bit(s): [12]
Read/Write

Readout BUFfer Status: In SAM Readout Mode, this bit indicates which of the two ping-pong
buffers is ready for readout. As a convenience, changes in the state of this bit can be monitored by
software to indicate when new data is available.

 Read:

 0 = Buffer A is available for external readout
 1 = Buffer B is available for external readout

 Write:

 <no action>

ARS Bit(s): [9]
Read/Write

ADC Readout Select: Selects whether the ADC Readout Registers (regs 0x10 – 0x30) contain the latest
digitized values or the averaged data values. This bit can be changed at any time.

 0 = ADC Data Samples read out at addr 0x10 – 0x30
 1= Averaged Data read out at addr 0x10 – 0x30

AINI Bit(s): [10]
Read/Write

Averager INItialize: Initializes the average subsystem: resets all state machine, zeroes out all counters, sets
all averager logic to idle state.

 0 = Normal operation
 1 = Initialize

SAM Bit(s): [11]
Read/Write

SAM mode enable: Enables SAM readout mode: the averaged data is automatically written into an output
buffer while another buffer accumulated sampled data. When a new set of averages is available, the buffers
are automatically swapped.

 0 = SAM mode DISabled
 1 = SAM mode ENAbled

Filename: avgr_reg_descrip_v3.doc Page 9 of 14 J. Dusatko / SLAC-ACD-EE

Internal ADC Sample Clock Rate:
Address offset: 0x06
This register sets the ADC sample frequency. The averager mode also includes a hardware change to the on-board
crystal oscillator from 16.000MHz to 15.36MHz. This alters the divided clock rates. In addition, the clock system
was modified to provide additional division ratios (3.84KHz, 7.68KHz and 15.36KHz) to provide sample rates
harmonically related to the US 60Hz AC line frequency. For the 64-sample averager, select the 3.84KHz rate. The
other two rates have been provided to support larger numbers of averaged samples (128 and 256, respectively). Note
that these three frequencies replace the 4KHz, 8KHz and 16KHz register value selections, respectively. These are
indicted in BOLD below. In addition, all of the other frequencies change value do to the different base clock
frequency.

Original Version Clock Rate Register Frequency Table

Register Value Clock Rate Frequency Register Value Clock Rate Frequency
0 1Hz 9 1KHz
1 2Hz 10 2KHz
2 5Hz 11 5KHz
3 10Hz 12 10KHz
4 20Hz 13 20KHz
5 50Hz 14 50KHz
6 100Hz 15 100KHz
7 200Hz 16 160KHz
8 500Hz -- --

Averager Modification Clock Rate Register Frequency Table

Register Value Clock Rate Frequency Register Value Clock Rate Frequency
0 0.960Hz 9 960.0KHz
1 1.92Hz 10 3.84KHz
2 4.80Hz 11 7.68KHz
3 9.60Hz 12 9.6KHz
4 19.20Hz 13 15.36KHz
5 48.0Hz 14 48.0KHz
6 96.0Hz 15 96.0KHz
7 192.0Hz 16 15.36KHz
8 480.0Hz -- --

Clock System Modification:
This addition modifies the clock system to include clock rates the allow the ADC to run at specific harmonics of the
60Hz AC line frequency. This is required to provide rejection at 60Hz and its harmonic multiples. To take 64
samples at 1/60th of a second, this corresponds to a 3.84KHz sampling rate. The board’s clock system only offers
2KHz and 5KHz selections. A 3.84Khz selection must be added, this is accomplished by an additional FPGA
gateware modification. Even with the modification, the 8413’s on-board 16MHz crystal oscillator will not support
this rate due to the non-integer relationship between the two numbers. Therefore, the crystal oscillator must be
changed to one with a 15.36MHz clock rate. This frequency give the correct harmonic relationship to the 60Hz line
frequency. Therefore, when the FPGA EEPROM is updated, the crystal oscillator will also be replaced. Two
additional harmonically-related clock frequencies will also be supplied, 7.68KHz and 15.36KHz. These frequencies
are meant support future different averaged sample values.

Filename: avgr_reg_descrip_v3.doc Page 10 of 14 J. Dusatko / SLAC-ACD-EE

Sequence of Operations:
This section describes how the board should be set up in order to perform data averaging. Note that these operations
are described in a sequential fashion and are meant to be implemented in the same way.

Format: Reg<address>_[<bit(s)>] = <value> (<comment>)

Setup Board:

Perform normal board setup and initialize operations:
<among the other normal setup/init operations, do the following>:
Set clock source = internal
Set internal clock rate = <as required>

DO NOT set ARM = 1 yet

Filename: avgr_reg_descrip_v3.doc Page 11 of 14 J. Dusatko / SLAC-ACD-EE

Averager Operation:

 Polling Readout Mode:

Initialize Averager:
Set and clear ACR AINI bit:

Write: Reg0x34_[10] = 0x1 (initialize averager unit)
Write: Reg0x34_[10] = 0x0 (release reset)

Enable Averager:

Set AEN bit:
Write: Reg0x34_[7] = 0x1 (enable averager)

Set board to begin sampling:

Set board into Normal Operating mode
Write: Reg0x34_[2] = 0x1 (Set ACR N/S bit)

Set board to ARMED state

Write: Reg0x00_[15] = 0x1 (Set CSR ARM bit)

Wait for Averaging to complete:
Read: Reg0x34_[8] = 0x<X> (Poll the ADN bit)

(When Reg0x34_[8] = 0x1, the Averaged data is ready to be read out)

Read Out the Avg Data:

Read: Reg0x10 – Reg0x30 = <Avg Data>

When reading is done, tell the averager:
Write: Reg0x34_[8] = 0x1 (Set the ADN bit)

Clear the ADN bit:

Write: Reg0x34_[8] = 0x0 (Clr the ADN bit)

Verify that it has re-inited:

Read: Reg0x34_[8] = 0x0 (ADN bit should = zero)

At this point if ARM=1 and AEN=1, then the averager will automatically start averaging the next set of samples. To
stop averaging at any point, set AEN=0, always set AINI =1 then =0 to re-init the unit before getting more averaged
data.

Filename: avgr_reg_descrip_v3.doc Page 12 of 14 J. Dusatko / SLAC-ACD-EE

 SAM Readout Mode:

Initialize Averager:
Set and clear ACR AINI bit:

Write: Reg0x34_[10] = 0x1 (initialize averager unit)
Write: Reg0x34_[10] = 0x0 (release reset)

Enable Averager:

Set AEN bit:
Write: Reg0x34_[7] = 0x1 (enable averager)

Enable SAM Mode:
Set SAM bit:

Write: Reg0x34_[11] = 0x1 (enable SAM readout mode)

Set board to begin sampling:

Set board into Normal Operating mode
Write: Reg0x34_[2] = 0x1 (Set ACR N/S bit)

Set board to ARMED state

Write: Reg0x00_[15] = 0x1 (Set CSR ARM bit)

(optional) Test the state of the A/B bit to see if new data is available:
Write: Reg0x34_[8] = 0x1 (read this bit, look for state change)

Read Out the Avg Data:

Read: Reg0x10 – Reg0x30 = <Avg Data>

 <wait a specific amount of time>

<Repeat Read Out operation or Goto A/B bit state test and wait for new data indication before reading out>

At this point the module runs automatically and new data is ready for readout every 100ms.

Filename: avgr_reg_descrip_v3.doc Page 13 of 14 J. Dusatko / SLAC-ACD-EE

Additional Features:

This section lists additional features that are intended to be added to later version(s) of the FPGA gateware:

Number of Averaged Samples:
The current averager is designed to average over 64 samples. This is should be adequate for our requirements. If it is
not, then a higher number of samples can be used: 128, 256, 1024, etc. The tradeoff will be between the
accumulation time and the system data rate requirements. It may be useful to provide a settable number of averaged
samples. Further evaluation will drive this feature’s implementation importance.

FIFO Usage:
It is sometimes convenient to acquire a record of averaged data into a memory instead of polling for each separate
sample set. In this case, the external FIFO could be used to store the averaged data. This feature would require
extensive modification of the averager and original 8413 control logic.

Filename: avgr_reg_descrip_v3.doc Page 14 of 14 J. Dusatko / SLAC-ACD-EE

Change history:

Hytec IP-ADC-8413
Data Averager Modification

Register Description
Document Change History

Version Date Changes
1.0 07-31-2007 -original version
2.0 09-xx-2007 - added clock system mod description
3.0 10-30-2007 - Added SAM readout mode

	Auxiliary Control Register (ACR):
	 Internal ADC Sample Clock Rate:
	Format: Reg<address>_[<bit(s)>] = <value> (<comment>)

