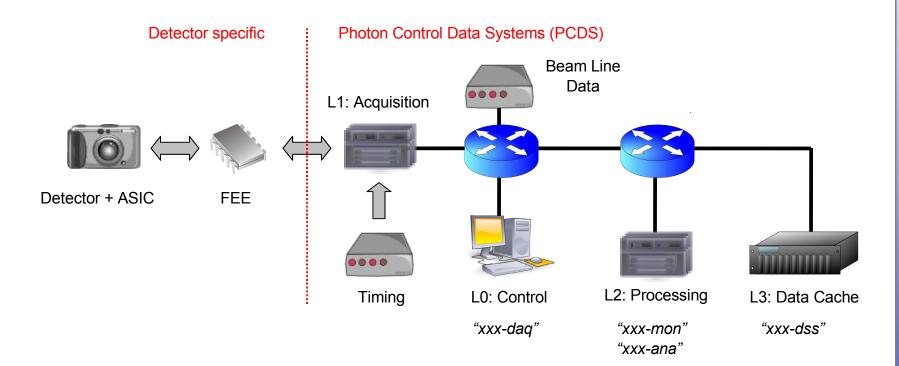


Data AcQuisition Overview & Online Analysis

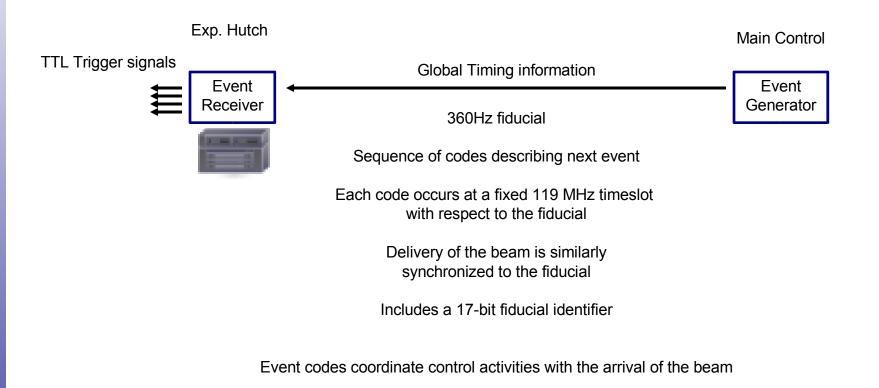
Photon Controls Data Systems Data Acquisition Group

Chris Ford, Wilfred Ghonsalves, Philip Hart, Chris O'Grady, Jack Pines, Jana Thayer, Tomy Tsai, Matt Weaver

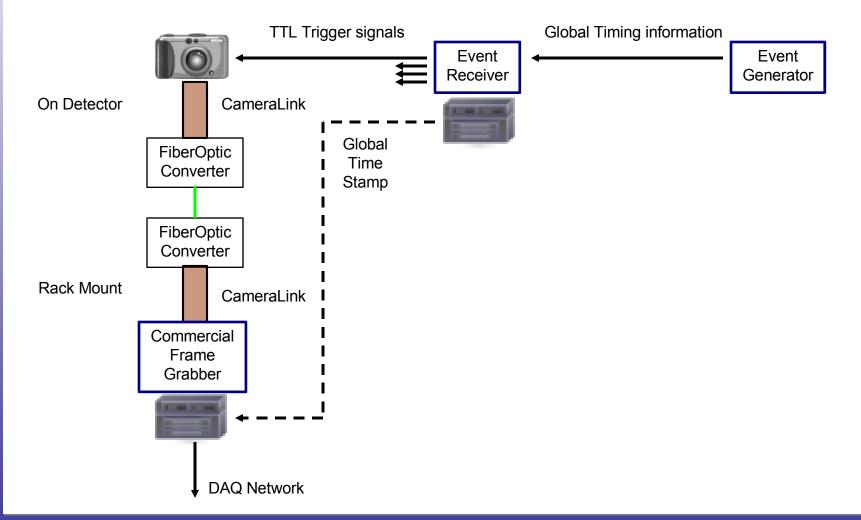

Outline

DAQ Overview
Architecture
Operation

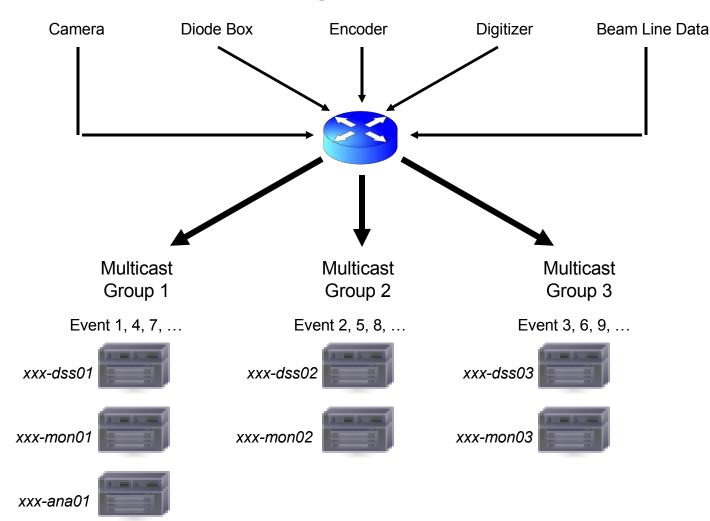
Online Analysis
 Core monitoring
 User analysis

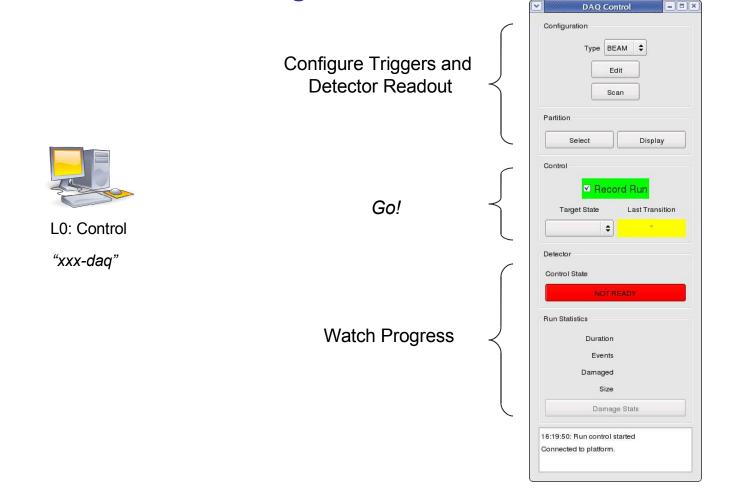


DAQ Architecture

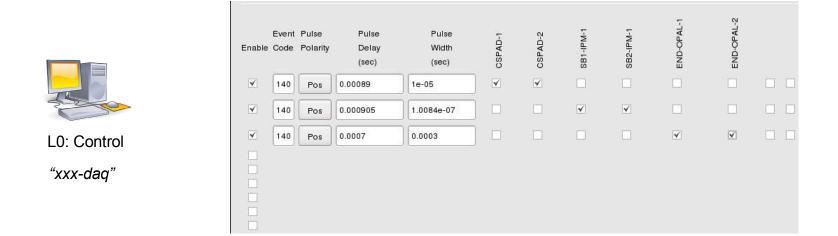


Timing System : Generating Triggers


Example Detector Readout : Commercial Cameras


Stanford Linear Accelerator Center

DAQ Network : Event Building



DAQ Control : Launching a "Run"

DAQ Control : Configuring Triggers

Detector readout is triggered by arrival of an event code (140 = beam on this fiducial) to gate the sampling/digitization with a TTL signal

DAQ Control : Configuring Readout

L0: Control

"xxx-daq"

un Delay 2		
Event Code 40		
nact Run Mode	RunButDrop	•
Activ Run Mode	RunAndSendTriggeredByTTL	•
Fest Data Indx	0	ן
Bad ASIC Mask	(hex) 0	٦
Sector Mask (he:	<) c0000000	٦

Quad	0	1	2	3	
	Quad Registers				
Shift Sel	4 4 4 4	4 4 4 4	4 4 4 4	4 4 4 4	
Edge Sel	0 0 0 0	0 0 0 0			
Read Clk Set	2	2	2	2	
Read Clk Hold	1	1	1	1	
Data Mode	2	2	2	2	
PRst Sel	1	1	1	1	
Acq Delay	280	280	280	280	
Int Time	1500	1500	1500	1500	
Dig Delay	960	960	960	960	
Amp Idle	0	0	0	0	
Inj Total	0	0	0	0	
Row/Col Shift	5	5	5	5	
		Digital P	ots Fields		
Vref	186	186	186	186	
Vin	186	186	186	186	
RampCurrR1	4	4	4	4	
RampCurrR2	37	37	37	37	
RampCurrRef	0	0	0	0	
RampVoltRef	97	97	97	97	
CompBias1	255	255	255	255	

Most detector readout configurations are simple.

Few parameters require changing.

Data Processing

Monitor node processing ("xxx-mon")

- Nodes register for event data multicasts
- Receive each detector's data and assemble complete events
- Copy events to shared memory and push event pointer into a queue for application consumption
- If the queue is full (processing bottleneck), events are dropped
- Data cache node processing ("xxx-dss")
 - Nodes register for event data multicasts
 - Receive each detector's data and assemble complete events
 - Record each event to online disk cache
 - Report event statistics to user console (#, size, health)
- Offline transfer
 - Run data is transferred from data cache nodes to offline storage
 - Transfer can start during recording as resources allow

Data Formats

XTC (eXtended Tagged Container)

- Online format : custom
- Event-based (data belonging to same event are contiguous)
- Serial access (but could be indexed)
- Defined in "pdsdata" C++ package

HDF5

- Translated from XTC after the offline transfer
- Random access
- Standard

Online Analysis

Core Online Monitoring

- User Shared Memory Application
- User Disk-Based Application

Core Online Monitoring

Graphical display of raw data

- Scalar data { diodes, encoders, beamline data }
- Waveform data { sampling digitizers }
- Image data { commercial and custom cameras }
- User configuration of fast, useful processing
 - Background subtraction
 - Sample/range selection
 - Projection
 - Filtering
 - Detector correlations
- Perform even more processing
 - User coding of specializations
 - Dynamic linking

Core Online Monitoring

	DAQ Online Monitoring 💶 🗙	
	DAQ Online	
A mada in ca	Setup	
Archive	Save	
display setup	Load	
(many plots)	Defaults	
	Data	Reset/Capture data
	Reset Plots	for all plots
	Save Plots	(text format)
	ACQ_1 ACQ_2	
	End_Opal_1	
List of primary	End_Opal_2 Env	
• •	Summary	
event displays	User	

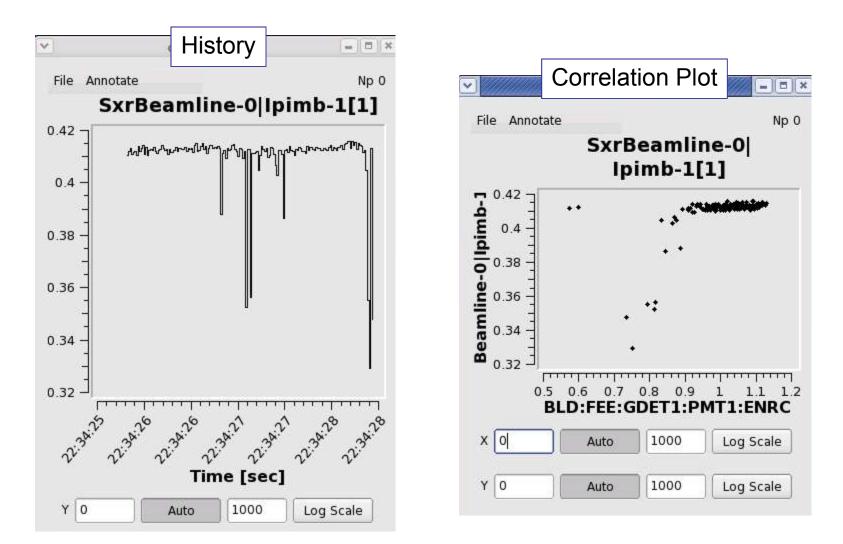
"Env" Display (scalars)

Channel	✓ Environment = □ ×
selection	Run Single Rate(Hz) 2.5 Processed
	Source Channel
BeamLine Data	SxrBeamline-0 lpimb-1[1] Select
{ gas det., e ⁻ bunch msmt }	Plot Type
Detector Scalars	O Sum (1dH) bins 100 lo 0 hi 0
{ diodes, encoders }	O Mean v Time points 100
Slow controls { motor positions, voltages, }	Mean v Var X Var bins 100 lo 0 hi 1
	Mean v Scan BLD:FEE: pts 200
	Normalization
	Normalize X variable to BLD:EBE 🜩
	Weighted Average Weight by BLD:EBE
	Plot Close

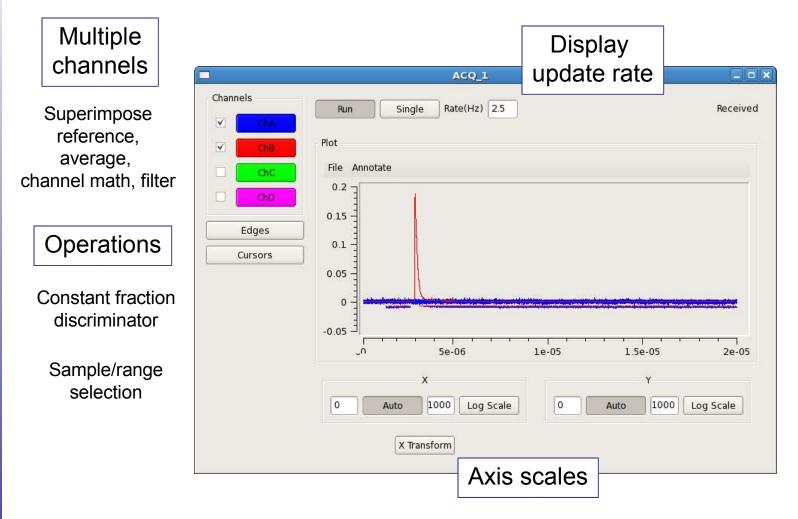
Plot Types

Frequency histogram

History stripchart

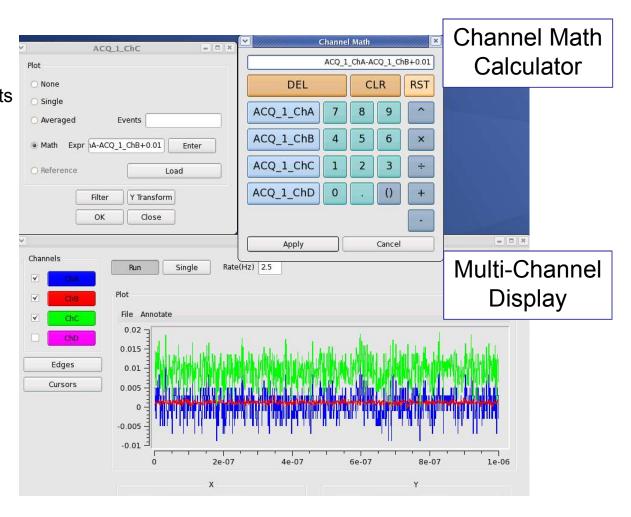

Correlation plot (vs other scalars)

Matt Weaver


Stanford Linear Accelerator Center

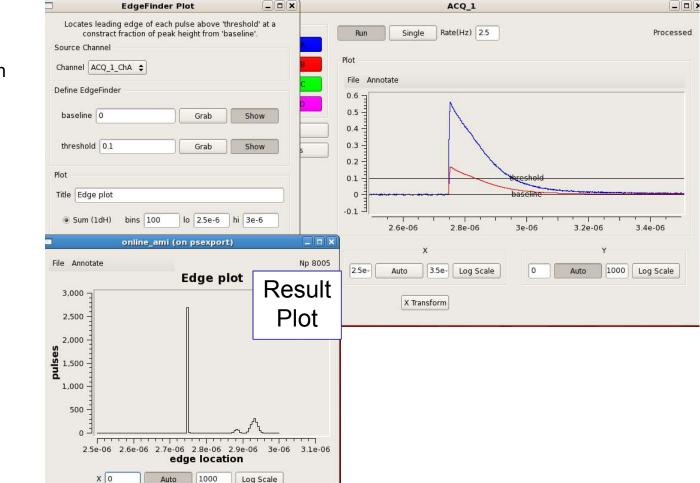
"Env" Display (scalars)

Waveform Display (Acqiris digitizer)



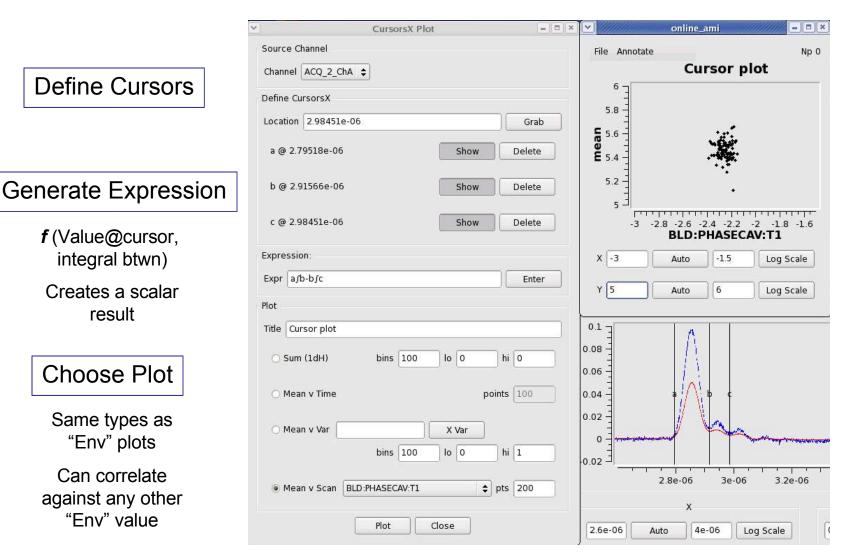
Channel Definitions

Single event Average last N events


Arithmetic expr.

Reference wf

Operations – Constant Fraction Discr.


Channel selection

Discriminator settings

Result plot definition

Operations - Cursors

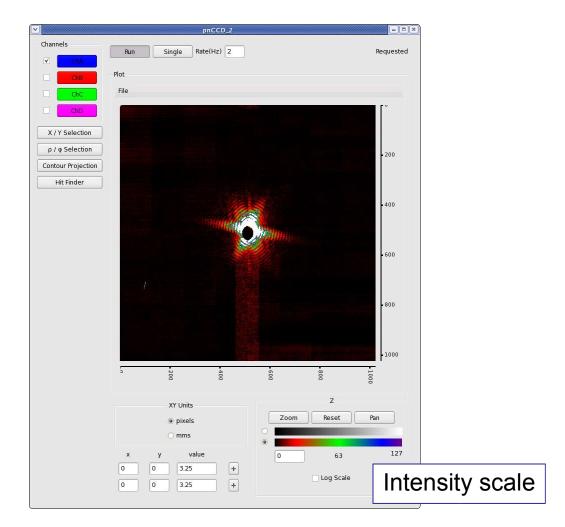
Matt Weaver

Operations – Cursors (contd)

- Scalar values which are generated by some operation can be correlated against the original set of scalar variables.
- Important application for scans.
- Appears in several places in the core monitoring interface.

Operations – Channel Filters

ACO 2 online_ami - 0 × Channels File Annotate Np 0 Run Single Rate(Hz) 2.5 ChA V 6.7 Plot 4 6.6 6.5 File Annotate 6.4 ChC 6.3 0.1 6.2 6.1 0.08 6 5.9 Edges 5.8 0.06 Cursors - 0 × online ami 0.04 Np 0 File Annotate 0.02 ChB 0 0.1 0.08 0.06 2.6e-06 2.8e-06 3e-06 3.2e 0.04 Y I ACQ_2_ChA 0.02 **Define Conditions** 0 -0.02 \$ <= 0 <= DAQ:EVR0:Evt142 А := 0 24:27 14:28 22:34:30 22:34:25 22:34 A := 0 <= DAQ:EVR0:Evt142 <= 0 ACQ_2_ChB - 110 Time [sec] Define Conditions 1000 Log Scale Auto <= DAQ:EVR0:Evt142 \$ <= 1 А := 1 Add 1000 Log Scale Auto A := 1 <= DAQ:EVR0:Evt142 <= 1 Remove Expression A Enter Apply Clear An EXPRESSION is a set of CONDITIONS separated by the operators A n B : logical AND of A and B


Can filter on logical combinations of "Env" scalar ranges

Example: eventcode indicating presence of optical laser

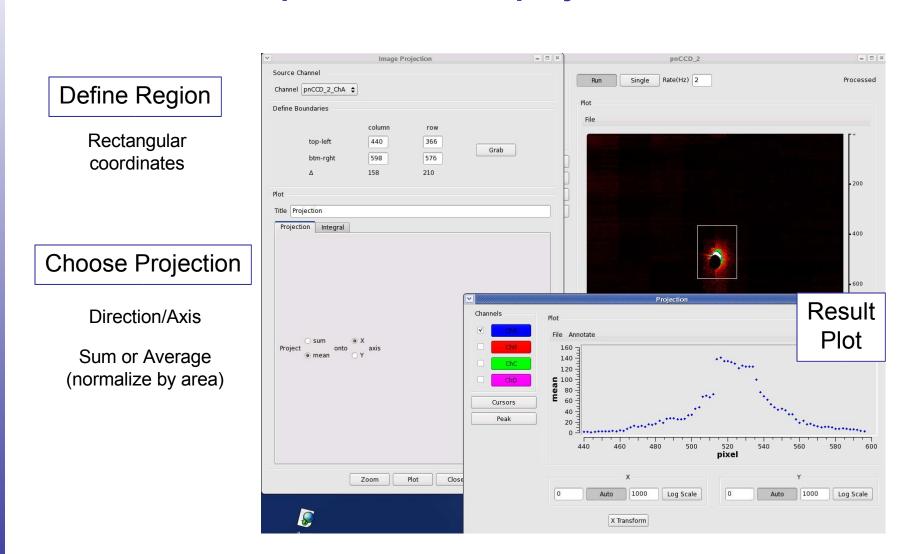
Matt Weaver

Camera Display (custom CCD)

Operations

Rectangular selection/projection

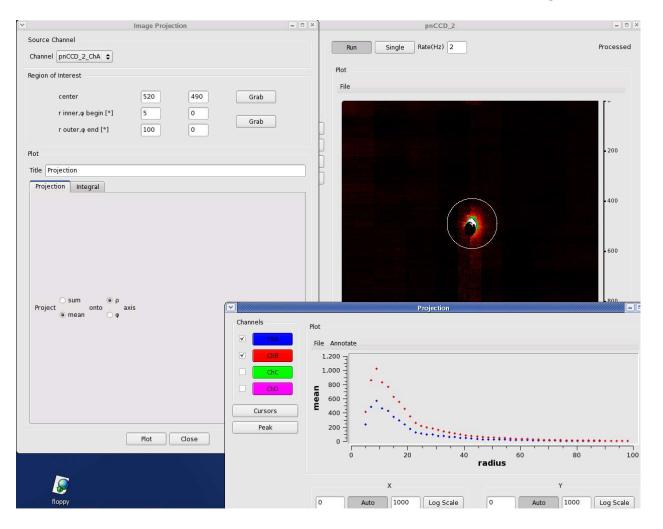
Annular selection/projection


Contour projection

Hit mapping

Matt Weaver

Operations – X/Y projection



Operations – X/Y projection

- The resulting projections can be treated like original waveforms : channels {averaging, reference}, operations {cursors, peak finder}
- Similarly for other projections
- Can also integrate over rectangular region to generate a scalar value and plot …

Operations – radial/azimuthal projection

Core Online Monitoring – User Specialization

- Simple C++ API defined for writing a plug-in module (amiuser)
 - User code called for each detector event received
 - Defined set of plot types are available for generating displays
 - Some accomodation of plot arrangement on pages
- User writes code and compiles a dynamic library
- Core monitoring application links in user library when available

Core Online Monitoring – User Specialization (2)

(https://confluence.slac.stanford.edu/display/PCDS/Adding+plots+to+the+Core+Online+Monitoring)

Copy /reg/g/pcds/package/amiuser to your area cp -rf /reg/g/pcds/package/amiuser ~/.

Edit the ExampleAnalysis.{hh,cc} files cd ~/amiuser; gedit ExampleAnalysis.cc

Build the libamiuser.so library make

Copy the libamiuser.so to your experiment's home area cp libamiuser.so ~*xxx*opr/.

User Shared Memory Application

- C++ API defined for receiving event data in shared memory (pdsdata/app)
- User writes code and builds an executable in their development environment
 - User adopts graphical display package of their choosing
 - May integrate with other analysis tools
- Application runs on monitoring nodes {"xxx-mon"}
- Recorded data files can also be played back through the shared memory interface
- CAMP pnCCD analysis example { XOnline, CASS }

User Disk-Based Application

One node ("xxx-ana") in each experiment records an extra copy of the data for prompt readback (even while writing)

- No risk to official data cache
- File remains for brief period (1-10hrs)
- First opportunity for offline-style analysis
- Provides only data access when offline transfer is backlogged

Data format is "XTC"

Initial analysis support provided by "myana" package

C++ framework (mostly simple C calls)

Getting Started with myana

(https://confluence.slac.stanford.edu/display/PCDS/Data+Analysis)

Nice instructions on Confluence now, but basic steps are:

ssh psexport	(login to a machine data access)
cp -r -d /reg/g/pcds/package/ana .	(copy package to your diskspace)
cd ana	(edit source files; e.g. myana.cc)
./comp	(build the executable and run)
./myana -f /reg/g/pcds/package/anate	estdata/acqiris.xtc -n 100

./root

(view ROOT histogram output)

Several example uses of myana are described on Confluence.

Conclusion

The core developers try to make the system intuitive and easy to use, but users will benefit considerably from early preparation of their analysis code and monitoring plans.