13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications

Direct Detection of Dark Matter using Cryogenic Germanium Detector

Richard Partridge SLAC National Accelerator Laboratory (for the CDMS Collaboration)

- Use high purity Ge to minimize radioactive contamination within the detector material
 - External sources of background are minimized by deep underground site, multiple layers of shielding and careful choice of materials
- "Calorimetric" measurement of total energy deposit through cryogenic phonon detectors
 - ~10⁶ phonons produced per keV of energy deposit
- Independent measurement of ionization charge allows electron recoils to be distinguished from nuclear recoils
 - ~300 electron-hole pairs produced per keV for electron recoils
 - ~100 electron-hole pairs produced per keV for nuclear recoils
- Operate in "background free" regime
 - Aim for <1 event of expected background in 2 years of running</p>
 - Avoid difficulties associated with background subtraction

- Thin-film deposition and photolithography used to create phonon detectors on surface of Ge crystal
- Tungsten Transition Edge Sensor (TES) biased to T_c using electro-thermal feedback, read out with SQUIDS

CDMS II Limited by Surface Events

- CDMS II detectors had charge electrodes on one face and phonon electrodes on opposite face
- Incomplete charge collection near phonon face

 $Ionization Yield = \frac{Ionization (keV)}{Phonon Energy (keV)}$

- ~ 1 for bulk electron recoils (γ source)
- .1 1 for surface events (β source)

- Fully digitized waveforms for phonon and charge signals provide additional handles for rejecting surface events
- Final CDMS II high-mass result: 2 events with expected background of 0.8 events

- New IZip detector design follows the CDMS approach of measuring phonon and ionization signals while largely eliminating the surface event background
 - Ionization and phonon measurements on both faces
 - Transverse electric fields at surface allow surface event identification
- Stage 1: SuperCDMS-Soudan
 - 10 kg of IZip detectors at Soudan (~2000 mwe)
 - Engineering run Jan Mar 2011 (ended by shaft fire)
 - Full payload (and shaft repairs) completed installation this month
- Stage 2: SuperCDMS-SNOLAB
 - ~100 kg of IZip detectors at SNOLAB (~6000 mwe)
 - R&D effort underway to scale up CDMS design/fab to 100 kg scale
 - DOE OHEP requested funding for 2nd generation DM projects in FY13
- Future: Scale cryogenic Ge detectors to ton scale

- 4 phonon + 2 charge channels (inner & outer) per side
- Charge electrodes interleaved with phonon sensor rails

- Transverse surface field in addition to bulk drift field
 - Typical charge electrode bias is +2V (side 1) and -2V (side 2)
 - Phonon rails are set to ground potential on both sides
 - Surface events can be identified through their charge asymmetry

Phonon waveforms provide further BG discrimination

- Position dependence can help identify surface events
- Prompt Luke-Neganov phonon contribution from accelerated e/h pairs may allow independent estimate of ionization charge

- Multiple techniques for rejecting electron recoils
 - Ionization yield ~1 for electron recoils in bulk
 - Charge asymmetry for electron recoils near surface
 - Pulse shape analysis provides additional discrimination power

Neutrons are the limiting BG at Soudan

Soudan OK for 10 kg target mass, move to SNOLAB for 100 kg

- Goal is ~100 kg of target mass in a new cryogenic system located in Ladder Lab at SNOLAB
 - Cosmic ray muon flux ~500x smaller than Soudan
 - Plan to commission SNOLAB Test Facility in late 2012 using CDMS-I dilution refrigerator for deep underground detector testing

Richard Partridge

Cartoon Layout of SuperCDMS-SNOLAB

- Baseline design is to use 100 mm diameter, 33 mm thick 100 Ge crystals
 - 1.4 kg per detector, plan to fabricate ~80 IZip detectors @ ~6 / month
 - ~2.3 more mass per crystal than for 76 mm Soudan IZip detectors

100 mm Fabrication Tooling

- CDMS uses customized semiconductor fabrication equipment for detector photolithography
 - Commercial equipment designed for thin wafers
 - Custom fixturing developed for 100 mm work

Detecting Photolithography Defects

Optical CMM used to image entire detector surface (~20K images, 0.6µm pixel size)

Richard Partridge

Images tiled using Google Maps API for easy navigation

Working on automated inspection software

100 mm Ionization Test

 100 mm detector fabricated with ionization electrodes to verify good charge collection in 33 mm thick Ge crystal

See expected gamma lines from ¹³³Ba source

- Have developed a "Spiral Mask" that simulates the electric field configuration of an IZip detector
 - Includes both transverse and drift fields
 - Mask design complete, fabrication this month

- Work has begun on the 100 mm IZip mask design
 - Includes both charge and phonon readout
 - Initial design will be targeted at using "Soudan" readout electronics
 - Final design will take advantage of improvements planned for SNOLAB

- Due to time constraints, this talk focused on Ge detector technology
 - Much good work on cryogenics, cold and warm electronics, test facility etc. not included (apologies to my hard-working colleagues!)
 - Also skipped was detector simulation work, including extensions to GEANT4 that provide for cryogenic phonon / charge transport
- New IZip detector design expected to allow backgroundfree performance up to the ton scale
- Installation of 10 kg IZip payload at Soudan this month
- Performing R&D for 100 kg experiment at SNOLAB
 - First 100 mm test devices have been fabricated and tested
 - Fabrication transitioning from hand-crafted to volume production

SuperCDMS Road Map

Richard Partridge