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@ Abundant Evidence for Dark Matter
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A Consistent Picture Has Emerged

¢ 4.6% of universe is ordinary matter

¢ 23% of universe is dark matter
Non-baryonic

Non-relativistic (cold)

Non-luminous, non-absorbing (dark)
Non-decaying, non-charged

¢ 72% of universe Is dark energy
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s Dark Matter and the Standard Model
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No sign of dark matter in this neighborhood!
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New Physics Beyond the SM?

¢ One of the great successes of the SM is the ability to

make accurate calculations and predictions
m Example: consistent results for radiative corrections to the W mass
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¢ Problem: radiative corrections to the Higgs mass have a
guadratic divergence
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Supersymmetry to the Rescue?

¢ Supersymmetry (SUSY) elegantly solves the problem of

divergent radiative corrections
m Each SM fermion has a supersymmetric boson partner
m Each SM boson has a supersymmetric fermion partner
m Cancellation of loop divergences due to Fermi-Dirac statistics
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¢ If SUSY conserves “R Parity”, supersymmetric particles

can only be created/annihilated in pairs
m Lightest supersymmetric particle (LSP) is stable - strong DM candidate
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CDMS Focus: WIMP Dark Matter

WIMP = Weakly Interacting Massive Particle

In thermal relic models, Qp,,
related to DM annihilation
Cross section

Qo ~ <O'AV>_1

Consistent with weak scale
dark matter (m ~0.1-1 TeV)
and SM weak interactions

SUSY models: neutralino y°
can have properties expected
for WIMP dark matter
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Direct Detection of Dark Matter

¢ Look for rare collisions of dark matter and a nucleus
m Signal is a nuclear recoil with 10’s of keV of kinetic energy
m Need to suppress electron recoil backgrounds from ionizing radiation

Background is
millions of times
higher than
desired signal!
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Direct Detection Kinematics

S,

¢ Simplest assumption: non-relativistic elastic scattering
m Recoll energy depends on WIMP velocity, scattering angle

2
myV,

E = ( )2 (1—0059*)

1+my/m,

max __
v, =2v, form, >>my

r

m
v =2—%v form, <<m,
mN

¢ Dark matter velocity distribution is a key input
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Dark Matter Halo Velocity

¢ Simplest velocity model
IS Maxwellian distribution
In galactic rest frame

2.2
AL

- 'Simulated Dark Matter Halo * +

-

f(vy)oce for v, <v,

= Mean DM velocity expected
to be similar to that of stars

V, ~ 220 km/s
V... ~ 540 km/s

m Local velocity must take into
account earth’s motion

\7L = \7G _Vearth
= Maxwellian distribution will at |
best approximate true velocity

distribution — dark matter halo Trrste i oy
s more complex! Springel et al, arXiv:0809.0898
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Recoll Energy Distribution

¢ Recoil energy is the sole kinematic variable measured

In direct detection experiments WIMP Differential Event Rate
My = 100 GeV/c?
a-N = 1074 em?
Xe

dR
dE

Po do
= f(v,)—d
2y f (%) £ M

r

Local DM density : p, = 0.39 GeV/cm®

Counts [#10 %/kg/keV/day]
=)

¢ Example:
m Spin-independent coherent scattering 1010 = S
o~ O'OAZFZ(CI) q= /2mN Er Recoil [keV]

m Recoll energy distributions are ~ exponential and ~ featureless

m Comparing “DM signals” in different target nuclei provides an important
test of WIMP hypothesis if a signal is observed

= With sufficient statistics in multiple experiments, can measure WIMP

mass and test velocity model / cross section assumptions
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@ Searching for Dark Matter with CDMS

¢ CDMS has pioneered the technique of searching for
dark matter in cryogenic Ge crystals that detect both
lonization and phonon signals to achieve nearly “O-

background” sensitivity

v ° Dark Matter
(mass ~ GeV — TeV)

Germanium

recoil energy

(tens of keV)
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SuperCDMS Technology

¢ Phonon and ionization electrodes are fabricated directly

onto Ge crystal faces using photolithography

m Phonons heat tungsten strips kept at transition between normal and
superconducting state, producing change in resistance

= lonization signal helps distinguish electron recoils (highly ionizing -
largely background) from nuclear recoils (dark matter signal)

Al Collector

W Transition-
Edge Sensor

Tungsten
Transition Edge
Sensor (TES)

T, ~ 80mK T (mK)




@ Low Background = Go Underground
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Passive Shielding / Muon Veto

¢ Lead: shielding for y’s from % 4
radioactive decay ,-,

¢ Poly: moderate fission and (a,n)
neutrons from U/Th decay chain

¢ Muon veto: reject residual cosmics
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@ CDMS |l Rejection of Electron Recolls

15 | .

lonization Yield

05_' A

¢ lonization yield provides powerful rejection of electron recoils
¢ Discrimination compromised by surface events where energy

IS deposited near the surface with phonon electrodes

* bulk electron recoils (gamma source)
. * bulk nuclear recoils (neutron source)
X surface electron recoils (NND selection)

lonization (keV)
Phonon Energy (keV)

lonization Yield =

~ 1 for bulk electron recoils (y source)

.1 — 1 for surface events (3 source)

~0.3 for nuclear recoils (n source)

Phonon Energy (keV)
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CDMS |l Timing Discrimination

¢ Fully digitized waveforms for phonon and charge signals
provide additional handles for rejecting surface events

¢ Cut on timing parameter removes most of the surface
event background
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CDMS Il Final Results

¢ World leading result at the time of publication

¢ Residual surface event background limited prospects for

dramatically improving sensitivity of CDMS |l detectors
= A new idea was needed!
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&8 SuperCDMS uses New iZIP Detectors

¢ Interleaved charge and phonon readout electrodes on both sides of
detector are designed to greatly reduce surface event background
m CDMS Il had phonon electrodes on one side, charge electrodes on the other side

Phonon Sensor

Al Fins E ﬂ é W TES
3
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IZIP Electric Field Configuration

¢ Transverse surface field in addition to bulk drift field
m Typical charge electrode bias is +2V (side 1) and -2V (side 2)
m Phonon rails are set to ground potential on both sides
m Surface events can be identified through their charge asymmetry
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Surface Event ldentification

¢ Surface events exhibit top/bottom asymmetry in both
charge and phonon measurements

Phonon Surface Event Discrimination
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IZIP Pulse Shape Discrimination

¢ Phonon waveforms provide further BG discrimination
m Position dependence can help identify surface events

= Prompt Luke-Neganov phonon contribution from accelerated e/h pairs
may allow independent estimate of ionization charge

Surface Event: side summed pulses (Pr~25keV) Bulk NR Event: side summed pulses (Pr~25keV)
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@ 15 iZIP Detectors Deployed at Soudan

¢ 5 Towers, each with 3 iZIPs  first 7 tower-
¢ ~9 kg of Ge target mass T
¢ Cool down began late 2011

¢ Taking data since March 2012

Richard Partridge 24



Testing IZIP Surface Event Rejection

lonization Yield

¢ Radioactive sources on two Soudan iZIPs demonstrate
rejection of surface events is sufficient for “0-background”
performance in full payload for SuperCDMS SNOLAB

® Failing Charge Symmetry Selection

g g @® Failing Charge Symmetry Selection
@ Passing Charge Symmetry Selection ® Passing Charge Symmetry Selection
4 L4 Neutrons from Cf-252 Calibration Source —195 Nuclear Recoil Yield Selection
== 3 = : 1.2 ~ T i TR R PR TG T =
1t 1t
3
Q
0.8f = 0.8
e 1,104 keV
0.6 -§°‘* /endpoint for
E 0.4t | 206Pg recoils
0.4} FENR s e R R
0.2t
0.2}
4 _ , _ 20 30 60 \_ 80 100
- 05 0 0.5 1 Recoil Energy eV]
lonization: (Side 1 - Side 2)/Total
No symmetric (blue) events in nuclear recoil band for
exposure equivalent to full SuperCDMS SNOLAB expt
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Projected Sensitivity @ Soudan

¢ Expect factor of ~15
Improvement in sensitivity
over CDMS I

¢ Comparable sensitivity to
Xenon 100 for spin
Independent cross
section

Richard Partridge
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Low Mass WIMP Search

¢ Standard approach:

m Lower thresholds, tolerate
some background

¢ CDMS-Lite approach:

= Apply ~70 V bias voltage

= |onization charge g produces
g4V of “Luke Phonons”,
amplifying the phonon signal
proportional to the ionization
charge

m Lose ionization yield
rejection, but flat Compton
background is stretched out /
reduced in amplitude

= Unique sensitivity to very low
WIMP masses

Richard Partridge
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SuperCDMS SNOLAB

¢ R&D underway for a G2 experiment at SNOLAB
m Scale up Ge iZIP technology to larger target mass
m Initial target mass of 200 kg, with cryostat capacity for 400 kg
= Deep underground site required to eliminate cosmic backgrounds

Cavern
Fridge
Tails
Veto
Quter Poly

ove

Lead

Inner Poly

Inner Cans
Cryocooler

Heat Exchangers
Ebox
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B'Y SLAC Role in SuperCDMS SNOLAB

¢ SLAC is responsible for the Ge Tower System that
provides the detector payload for SuperCDMS SNOLAB

¢ Broad program of R&D underway with efforts in:
Detector fabrication

Cold electronics

Cold mechanics

GEANT simulations

SNOLAB test facility

¢ Many interesting problems and new challenges

m Strong SLAC team working closely with Stanford / CDMS collaborators

e Makoto Asai, Anders Borgland, Daniel Brandt, Paul Brink, Wes Craddock, Brian Duda,
Ken Fouts, Gary Godfrey, Jasmine Hasi, Mike Kelsey, Chris Kenney, Maria-Elena
Monzani, Dave Nelson, Marco Oriunno, Richard Partridge, Mike Racine, Rudy Resch,
Kristi Schneck, Astrid Tomada, Dennis Wright

¢ A brief tour of this effort follows
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100 mm 1ZIP Detectors

¢ Plan to use 100 mm diameter, 33 mm thick Ge crystals
m ~2.3 more mass per crystal than for 76 mm Soudan iZIP detectors
m 1.4 kg per detector, plan to fabricate ~140 iZIP detectors @ ~8 / month
m Crystals shaped into cylinders and polished by Stanford & Texas A&M
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@ 100 mm Fabrication Tooling

¢ CDMS uses customized semiconductor fabrication
equipment for detector photolithography

m  Commercial equipment designed for thin wafers
m Custom fixturing developed for 200 mm work

dum my crystal

Richard Partridge
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Detecting Photolithography Defects

Optical CMM used to
image entire detector
surface (~20K images,
0.6um pixel size)

Richard Partridge

Images tiled using
Google Maps API for
easy havigation

Working on automated
inspection software
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100 mm lonization Test

¢ 100 mm detector fabricated with ionization electrodes to

verify good charge collection in 33 mm thick Ge crystal
m See 60 keV gamma line from %4!Am source

241Am lonization Test

Counts

400 L. Wy F

0 100 200 300 400
Ionization energy [keV]
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IZIP Design

m Fiducial region can be defined using ionization or phonon measurements

m 6 phonon channels / side, 2 ionization channels per side

Richard Partridge

¢ First iZIPs consistent with SNOLAB requ




Detector Fabrication Throughput

¢ SNOLAB goal is to fabricate 8 detectors / month

¢ Performed throughput test using 76 mm Si crystals
m Fabricated 6 detectors in ~3 weeks at Stanford Nanofabrication Facility
= New sputtering system expected to boost rate to >8 detectors / month
= Additional capacity available at TAMU

Detector
fabrication
should not be
a bottleneck
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Testing Throughput

¢ Testing needs to keep up detector fabrication pipeline
All detectors tested in 3He fridge (shorts, opens, ionization tests?)

1 detector per batch tested in dilution fridge to determine TES T,

If necessary, implant with >°Fe to adjust T of batch to ~70-80 mK
Assembled towers tested in dilution fridge (6 detectors / tower)
Parallel testing program for cold hardware (typically at 4K)

- o

8 detectors: ' '

2 batches
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Cold Readout Electronics

¢ SQUID phonon readout
m SQUID arrays are extremely sensitive to changes in current
m Transition edge sensors biased at constant voltage, so small change in in
TES resistance produces a change in current through the SQUIDs
¢ High Electron Mobility Transistor (HEMT) charge readout
m Traditional FET front end freezes out below ~100° K
= HEMT based on 2D electron gas — works fine at 4° K
m ~50 uW per channel (x100 reduction from current JFET), lower noise

3.0 HEMT 2 IV curves, October 16, 2012
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100 mm Tower Design

¢ Tower provides a tightly
Integrated set of

components and functions T HEMT card
= Mechanical support SQUIDs b
= Thermal management PT2 5T
= Wiring from 50 mK to 4K ST CP
= Cold electronics (SQUIDs, P
HEMTS) MC MC
= IR blocking

phonon

= Interface to wiring assembly for vertical cable

4K — 300K (~14000 wires)

¢ Thermal issues are huge

m Very limited cooling capacity
from dilution refrigerator

ionization

cable [r'igid}\

phonon
detector

package _..1.'.‘

cable
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MC Simulations

¢ SLAC has developed G4-based background simulation
framework (supersim) and implemented cryogenic
electron/hole/phonon transport in G4

Run 23 gsum and data spectra

x10°

supersim energy depositions
—qgsum (-10V bias) series 07120203-2033

Test Facility BG
Simulation
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S,

SNOLAB Test Facility (STF)

¢ SLAC is refurbishing the dilution
refrigerator from CDMS-1 for use
In STF

¢ STF will be located in the Ladder
Lab, adjacent to the planned . -
location for SuperCDMS-SNOLAB E‘ |
¢ STF will allow low background, N

deep underground testing of
CDMS detectors

m Ability to test individual detectors allows
performance to be verified before
construction of full detector
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uper
CD

Projected Sensitivity @ SNOLAB

¢ EXxpect to achieve G2
sensitivity of 80 yoctobarn
(8x10-47 cm?) for spin
Independent WIMP
scattering

¢ Factor of ~30
Improvement over
SuperCDMS Soudan

¢ Capability for background
rejection at this level of
sensitivity has already
been demonstrated

Richard Partridge
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Summary

¢ SuperCDMS has been running at Soudan for past 9

months with 9 kg of 76 mm diameter IZIP detectors

m Expect factor of ~15 improvement in sensitivity over CDMS I
= Unique ability to achieve low thresholds for low mass WIMP search

¢ Broad program of R&D underway to develop 100 mm
Ge Tower system that comprises the payload for
SupCDMS SNOLAB

= Many interesting challenges in scaling up original CDMS 76 mm design
m SLAC is managing and strongly contributing to this effort

¢ Working towards a 200 kg experiment at SNOLAB

m Expect factor of ~30 improvement in sensitivity over SuperCDMS
Soudan that will cover a significant region of SUSY parameter space

m Have already demonstrated required surface event rejection using
sources at Soudan

m Cryostat sized for 400 kg payload for future initiatives
Richard Partridge 42
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