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Abundant Evidence for Dark Matter 

2 Richard Partridge 

Rotation Curves 

CMB Fluctuations 

Matter Density Fluctuations 

Bullet Cluster 



A Consistent Picture Has Emerged 

 4.6% of universe is ordinary matter 
 23% of universe is dark matter 

 Non-baryonic 
 Non-relativistic (cold) 
 Non-luminous, non-absorbing (dark) 
 Non-decaying, non-charged 

 72% of universe is dark energy 
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Dark Matter and the Standard Model 
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No sign of dark matter in this neighborhood! 



New Physics Beyond the SM? 

 One of the great successes of the SM is the ability to 
make accurate calculations and predictions 
 Example: consistent results for radiative corrections to the W mass 

 
 
 
 

  
 
 
 
 
 

 Problem: radiative corrections to the Higgs mass have a 
quadratic divergence 
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Supersymmetry to the Rescue? 

 Supersymmetry (SUSY) elegantly solves the problem of 
divergent radiative corrections 
 Each SM fermion has a supersymmetric boson partner 
 Each SM boson has a supersymmetric fermion partner 
 Cancellation of loop divergences due to Fermi-Dirac statistics 

 
 
 
 
 
 

 

 If SUSY conserves “R Parity”, supersymmetric particles 
can only be created/annihilated in pairs 
 Lightest supersymmetric particle (LSP) is stable - strong DM candidate 
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CDMS Focus: WIMP Dark Matter 
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In thermal relic models, ΩDM 
related to DM annihilation 
cross section 

WIMP = Weakly Interacting Massive Particle  

Consistent with weak scale 
dark matter (m ~0.1–1 TeV) 
and SM weak interactions 

SUSY models: neutralino χ0 
can have properties expected 
for WIMP dark matter 

1~ −Ω vADM σ



Direct Detection of Dark Matter 

 Look for rare collisions of dark matter and a nucleus 
 Signal is a nuclear recoil with 10’s of keV of kinetic energy 
 Need to suppress electron recoil backgrounds from ionizing radiation 
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Direct Detection Kinematics 

 Simplest assumption: non-relativistic elastic scattering 
 Recoil energy depends on WIMP velocity, scattering angle 

 
 
 
 
 
 

 
 
 
 

 Dark matter velocity distribution is a key input 
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Dark Matter Halo Velocity 

 Simplest velocity model 
is Maxwellian distribution 
in galactic rest frame 

 
 

 Mean DM velocity expected 
to be similar to that of stars  

 
 
 

 Local velocity must take into 
account earth’s motion 
 

 Maxwellian distribution will at 
best approximate true velocity 
distribution – dark matter halo 
is more complex! 
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Recoil Energy Distribution 

 Recoil energy is the sole kinematic variable measured 
in direct detection experiments 
 
 
 

 

 Example: 
 Spin-independent coherent scattering 

 
 

 Recoil energy distributions are ~ exponential and ~ featureless 
 Comparing “DM signals” in different target nuclei provides an important 

test of WIMP hypothesis if a signal is observed 
 With sufficient statistics in multiple experiments, can measure WIMP 

mass and test velocity model / cross section assumptions 
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Searching for Dark Matter with CDMS 

 CDMS has pioneered the technique of searching for 
dark matter in cryogenic Ge crystals that detect both 
ionization and phonon signals to achieve nearly “0-
background” sensitivity 
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SuperCDMS Technology 

 Phonon and ionization electrodes are fabricated directly 
onto Ge crystal faces using photolithography 
 Phonons heat tungsten strips kept at transition between normal and 

superconducting state, producing change in resistance 
 Ionization signal helps distinguish electron recoils (highly ionizing - 

largely background) from nuclear recoils (dark matter signal) 
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Low Background ⇒ Go Underground 
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Soudan (now): 
CDMS II 
SuperCDMS Soudan 

SNOLAB (future): 
SuperCDMS SNOLAB 



Passive Shielding / Muon Veto 

 Lead: shielding for γ’s from 
radioactive decay 

 Poly: moderate fission and (α,n) 
neutrons from U/Th decay chain 

 Muon veto: reject residual cosmics 
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CDMS II Rejection of Electron Recoils 
 Ionization yield provides powerful rejection of electron recoils 
 Discrimination compromised by surface events where energy 

is deposited near the surface with phonon electrodes 
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CDMS II Timing Discrimination 

 Fully digitized waveforms for phonon and charge signals 
provide additional handles for rejecting surface events 

 Cut on timing parameter removes most of the surface 
event background 
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CDMS II Final Results 

 World leading result at the time of publication 
 Residual surface event background limited prospects for 

dramatically improving sensitivity of CDMS II detectors 
 A new idea was needed! 
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The SuperCDMS Collaboration 
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SuperCDMS uses New iZIP Detectors 
 Interleaved charge and phonon readout electrodes on both sides of 

detector are designed to greatly reduce surface event background 
 CDMS II had phonon electrodes on one side, charge electrodes on the other side 
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Al Fins W TES 
Phonon Sensor 

Charge Electrode 



iZIP Electric Field Configuration 

 Transverse surface field in addition to bulk drift field 
 Typical charge electrode bias is +2V (side 1) and -2V (side 2) 
 Phonon rails are set to ground potential on both sides 
 Surface events can be identified through their charge asymmetry 
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Surface Events 

Bulk Events 



Surface Event Identification 

 Surface events exhibit top/bottom asymmetry in both 
charge and phonon measurements 
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iZIP Pulse Shape Discrimination 

 Phonon waveforms provide further BG discrimination 
 Position dependence  can help identify surface events 
 Prompt Luke-Neganov phonon contribution from accelerated e/h pairs 

may allow independent estimate of ionization charge 
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Surface Event Bulk Event 

Phonon Side 1 

Phonon Side 2 



15 iZIP Detectors Deployed at Soudan 

 5 Towers, each with 3 iZIPs 
 ~9 kg of Ge target mass 
 Cool down began late 2011 
 Taking data since March 2012 
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Unpacking the first iZIP tower  at 
Soudan 

5 towers installed in Soudan cryogenic system 



Testing iZIP Surface Event Rejection 

 Radioactive sources on two Soudan iZIPs demonstrate 
rejection of surface events is sufficient for “0-background” 
performance in full payload for SuperCDMS SNOLAB  

No symmetric (blue) events in nuclear recoil band for 
exposure equivalent to full SuperCDMS SNOLAB expt 
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104 keV 
endpoint for 
206Po recoils 



Projected Sensitivity @ Soudan 

 Expect factor of ~15 
improvement in sensitivity 
over CDMS II 

 Comparable sensitivity to 
Xenon 100 for spin 
independent cross 
section 
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Low Mass WIMP Search 

 Standard approach: 
 Lower thresholds, tolerate 

some background 

 CDMS-Lite approach: 
 Apply ~70 V bias voltage 
 Ionization charge q produces 

q∆V of “Luke Phonons”, 
amplifying the phonon signal 
proportional to the ionization 
charge 

 Lose ionization yield 
rejection, but flat Compton 
background is stretched out / 
reduced in amplitude 

 Unique sensitivity to very low 
WIMP masses 
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CDMS-Lite: 
Ephonon = Erecoil*(1+Yield*∆V/3eV) 



SuperCDMS SNOLAB 

 R&D underway for a G2  experiment at SNOLAB 
 Scale up Ge iZIP technology to larger target mass 
 Initial target mass of 200 kg, with cryostat capacity for 400 kg 
 Deep underground site required to eliminate cosmic backgrounds 
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CDMS Cavern at  SNOLAB 



SLAC Role in SuperCDMS SNOLAB 

 SLAC is responsible for the Ge Tower System that 
provides the detector payload for SuperCDMS SNOLAB 

 Broad program of R&D underway with efforts in: 
 Detector fabrication 
 Cold electronics 
 Cold mechanics 
 GEANT simulations 
 SNOLAB test facility 

 Many interesting problems and new challenges 
 Strong SLAC team working closely with Stanford / CDMS collaborators 

 Makoto Asai, Anders Borgland, Daniel Brandt, Paul Brink, Wes Craddock, Brian Duda, 
Ken Fouts, Gary Godfrey, Jasmine Hasi, Mike Kelsey, Chris Kenney, Maria-Elena 
Monzani, Dave Nelson, Marco Oriunno, Richard Partridge, Mike Racine, Rudy Resch, 
Kristi Schneck, Astrid Tomada, Dennis Wright 

 A brief tour of this effort follows 
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100 mm iZIP Detectors 

 Plan to use 100 mm diameter, 33 mm thick Ge crystals 
 ~2.3 more mass per crystal than for 76 mm Soudan iZIP detectors 
 1.4 kg per detector, plan to fabricate ~140 iZIP detectors @ ~8 / month 
 Crystals shaped into cylinders and polished by Stanford & Texas A&M 
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100 mm diameter Ge crystal 



100 mm Fabrication Tooling 

 CDMS uses customized semiconductor fabrication 
equipment for detector photolithography 
 Commercial equipment designed for thin wafers 
 Custom fixturing developed for 100 mm work 
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Mask aligner with 100 mm 
dummy crystal 



Detecting Photolithography Defects 
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Optical CMM used to 
image entire detector 
surface (~20K images, 
0.6µm pixel size) 

Images tiled using 
Google Maps API for 
easy navigation 
 
Working on automated 
inspection software 



100 mm Ionization Test 

 100 mm detector fabricated with ionization electrodes to 
verify good charge collection in 33 mm thick Ge crystal 
 See 60 keV gamma line from 241Am source 
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241Am Ionization Test 



iZIP Design 

 First iZIPs consistent with SNOLAB  requirements 
 6 phonon channels / side, 2 ionization channels per side 
 Fiducial region can be defined using ionization or phonon measurements 
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Detector Fabrication Throughput 

 SNOLAB goal is to fabricate 8 detectors / month 
 Performed throughput test using 76 mm Si crystals 

 Fabricated 6 detectors in ~3 weeks at Stanford Nanofabrication Facility 
 New sputtering system expected to boost rate to >8 detectors / month 
 Additional capacity available at TAMU 
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Detector 
fabrication 
should not be 
a bottleneck 



Testing Throughput 

 Testing needs to keep up detector fabrication pipeline 
 All detectors tested in 3He fridge (shorts, opens, ionization tests?) 
 1 detector per batch tested in dilution fridge to determine TES TC 

 If necessary, implant with 56Fe to adjust TC of batch to ~70-80 mK 
 Assembled towers tested in dilution fridge (6 detectors / tower) 
 Parallel testing program for cold hardware (typically at 4K) 
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Cold Readout Electronics 
 SQUID phonon readout 

 SQUID arrays are extremely sensitive to changes in current 
 Transition edge sensors biased at constant voltage, so small change in in 

TES resistance produces a change in current through the SQUIDs 

 High Electron Mobility Transistor (HEMT) charge readout 
 Traditional FET front end freezes out below ~100° K 
 HEMT based on 2D electron gas – works fine at 4° K  
 ~50 µW per channel (x100 reduction from current JFET), lower noise 
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100 mm Tower Design 

 Tower provides a tightly 
integrated set of 
components and functions 
 Mechanical support 
 Thermal management 
 Wiring from 50 mK to 4K 
 Cold electronics (SQUIDs, 

HEMTs) 
 IR blocking 
 Interface to wiring assembly for 

4K → 300K (~14000 wires) 

 Thermal issues are huge 
 Very limited cooling capacity 

from dilution refrigerator 
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MC Simulations 

 SLAC has developed G4-based background simulation 
framework (supersim) and implemented cryogenic 
electron/hole/phonon transport in G4 
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SNOLAB Neutron Simulation Charge/Phonon Simulation 

Test Facility BG 
Simulation 



SNOLAB Test Facility (STF) 

 SLAC is refurbishing the dilution 
refrigerator from CDMS-1 for use 
in STF 

 STF will be located in the Ladder 
Lab, adjacent to the planned 
location for SuperCDMS-SNOLAB 

 STF will allow low background, 
deep underground testing of 
CDMS detectors 
 Ability to test individual detectors allows 

performance to be verified before 
construction of full detector 
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Projected Sensitivity @ SNOLAB 

 Expect to achieve G2 
sensitivity of 80 yoctobarn 
(8×10-47 cm2) for spin 
independent WIMP 
scattering 

 Factor of ~30 
improvement over 
SuperCDMS Soudan 

 Capability for background 
rejection at this level of 
sensitivity has already 
been demonstrated 
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Summary 

 SuperCDMS has been running at Soudan for past 9 
months with 9 kg of 76 mm diameter iZIP detectors 
 Expect factor of ~15 improvement in sensitivity over CDMS II 
 Unique ability to achieve low thresholds for low mass WIMP search 

 Broad program of R&D underway to develop 100 mm 
Ge Tower system that comprises the payload for 
SupCDMS SNOLAB 
 Many interesting challenges in scaling up original CDMS 76 mm design 
 SLAC is managing and strongly contributing to this effort 

 Working towards a 200 kg experiment at SNOLAB 
 Expect factor of ~30 improvement in sensitivity over SuperCDMS 

Soudan that will cover a significant region of SUSY parameter space 
 Have already demonstrated required surface event rejection using 

sources at Soudan 
 Cryostat sized for 400 kg payload for future initiatives 
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