

Stanford Linear Accelerator Center
Flash Core Set
Electronics group

design specification

Document Version: 0.3
Document Issue: 1
Document Edition: English
Document Status: Draft - for internal distribution only
Document ID: XXX-TD-00860
Document Date: July 20, 2006

Stanford Linear Accelerator Center (SLAC)
2575 Sandhill Road

Menlo Park California, 94025 USA

Flash Core Set design specification
July 20, 2006 Version/Issue: 0.3/1
page 2 Draft - for internal distribution only

This document has been prepared using the Software Documentation Layout Templates that have been
prepared by the IPT Group (Information, Process and Technology), IT Division, CERN (The European
Laboratory for Particle Physics). For more information, go to http://framemaker.cern.ch/.

Flash Core Set design specification
Abstract Version/Issue: 0.3/1
Abstract

The Flash Memory Controller (FMC) is Intellectual Property (core IP) designed to provide an
interface between a set of flash memory devices and either a PCI bus or PCI Express interface.
The FMC is designed to operate with the Samsung K9XXG08UXM family of flash devices and
can manage as much as 128 Gigabytes of flash storage. The interface is strictly divided into
data and control side interfaces. The data side interface supports any variety of PCI bus
configurations, including speeds of either 33 or 66 MHZ, and widths of either 32 or 64 bits. The
FMC contains a generic DMA engine (bus master) interface which allows for split-transactions
(concurrent reads and writes). The control side interface is designed to operate as a slave
(target) on a PCI bus and includes support for notification of I/O activity and completion
through PCI interrupts. Although the control interface is designed with PCI in mind, the
interface is generic enough to allow many different control implementations.

Hardware compatibility

This document assumes the following hardware revision:

FMC: Version TBD

Intended audience

This document is intended principally as a guide for the developer and users of the Flash
Memory Controller (FMC).

Conventions used in this document

Certain special typographical conventions are used in this document. They are documented
here for the convenience of the reader:

• Field names are shown in bold and italics (e.g., respond or parity).

• Acronyms are shown in small caps (e.g., SLAC or TEM).

• Hardware signal or register names are shown in Courier bold (e.g., RIGHT_FIRST or
LAYER_MASK_1)
Draft - for internal distribution only page 3

Flash Core Set design specification
References Version/Issue: 0.3/1
References

1 Xilinix Virtex-4 Family Overview. Dated February 10, 2006

2 Actel, CorePCI Target, Master, and Master/Target Product specification (v3.0),
October 2000.

3 Xilinix Spartan-3 FPGA Family: Complete Data Sheet. Dated April 03, 2006

4

page 4 Draft - for internal distribution only

Flash Core Set design specification
Document Control Sheet Version/Issue: 0.3/1
Document Control Sheet

Table 1 Document Control Sheet

Document Title: Flash Core Set design specification

Version: 0.3

Issue: 1

Edition: English

ID: XXX-TD-00860

Status: Draft - for internal distribution only

Created: February 9, 2002

Date: July 20, 2006

Access: Z:\Private\pcp\fcs\v2.1\frontmatter.fm

Keywords: Flash Memory Controller

Tools DTP System: Adobe FrameMaker Version: 6.0

Layout
Template:

Software Documentation
Layout Templates

Version: V2.0 - 5 July 1999

Content
Template:

-- Version: --

Authorship Coordinator: Michael Huffer

Written by: Michael Huffer
Draft - for internal distribution only page 5

Flash Core Set design specification
Document Status Sheet Version/Issue: 0.3/1
Document Status Sheet

Table 2 Document Status Sheet

Title: Flash Core Set design specification

ID: XXX-TD-00860

Version Issue Date Reason for change

1.0 1 4/24/2006 Initial draft
page 6 Draft - for internal distribution only

Flash Memory Controller design specification
Table of Contents Version/Issue: 0.3/1
Table of Contents

Abstract . 3

Hardware compatibility . 3

Intended audience . . 3

Conventions used in this document . . 3

References . 4

Document Control Sheet . . 5

Document Status Sheet . 6

List of Figures . 11

List of Tables . 13

Chapter 1
Principals of operation . 15

1.1 Introduction . 15
1.2 The Flash Devices used by the FMC 17

1.2.1 Page data structure and data encoding 19
1.2.2 Flash Attributes . 20

1.3 The FMC . 20
1.3.1 FMC Attributes . 22
1.3.2 FMC Resets . 22

1.4 Transactions . 22
1.4.1 Commands . 23
1.4.2 Addressing . 24
Draft - for internal distribution only page 7

Flash Memory Controller design specification
Table of Contents Version/Issue: 0.3/1
1.4.3 Units of data transfer . 25
1.5 Performance counters . 26

1.5.1 The Reads counter . 27
1.5.2 The Writes counter . 27
1.5.3 The Moves counter . 27
1.5.4 The Erasures counter . 27
1.5.5 The Device Errors counter 28
1.5.6 The Arbitration time counter 28
1.5.7 The Busy time counter . 28
1.5.8 The Arbitration timeouts counter 28
1.5.9 The Command Congestion counter 28

1.6 The Arbiter . 28
1.6.1 Arbiter Attributes . 30
1.6.2 Arbiter Resets . 30

1.7 Performance . 30

Chapter 2
The Initiator Interface . 33

2.1 Conventions . 33
2.2 Initiator Interface . 34
2.3 Timing . 34

Chapter 3
Initiator Commands . 35

3.1 Conventions . 35
3.2 Get Blocks . 36

3.2.1 Argument . 36
3.2.2 Performance counters incremented 36

3.3 Set Page . 37
3.3.1 Argument . 37
3.3.2 Performance counters incremented 37

3.4 Move Page . 38
3.4.1 Argument . 38
3.4.2 Performance counters incremented 38

3.5 Erase Block . 39
3.5.1 Argument . 39
3.5.2 Performance counters incremented 40

3.6 Get Flash Attributes . 40
3.6.1 Argument . 40
3.6.2 Performance counters incremented 41

3.7 Get FMC Attributes . 41
3.7.1 Argument . 41
3.7.2 Performance counters incremented 42
page 8 Draft - for internal distribution only

Flash Memory Controller design specification
Table of Contents Version/Issue: 0.3/1
3.8 Get Counter . 42
3.8.1 Argument . 42

Chapter 4
The Transfer Interface. . 45

4.1 Conventions . 45
4.2 Transaction Interface . 46
4.3 Inbound Interface . 46
4.4 Outbound Interface . 47
4.5 Transfer Timing . 48

4.5.1 Transfer one or more code blocks 49
4.5.2 Transfer one word . 49
4.5.3 Zero-Length Transfers . 50

Chapter 5
The Arbiter Interface . 51

5.1 Conventions . 51
5.2 Transfer Engine Interface . 52
5.3 FMC Interface . 53
5.4 Arbiter Timing . 53

5.4.1 Transfer one or more code blocks 54
Draft - for internal distribution only page 9

Flash Memory Controller design specification
Table of Contents Version/Issue: 0.3/1
page 10 Draft - for internal distribution only

Flash Memory Controller design specification
List of Figures Version/Issue: 0.3/1
List of Figures

Figure 1 p. 16 Abstract design of a flash memory system using the FCS

Figure 2 p. 16 Abstract design of a flash memory system using the FCS

Figure 3 p. 18 Interleaving of code blocks within the FMC

Figure 4 p. 19 Page Organization

Figure 5 p. 20 Structure of the returned word for the “Get Flash Attributes” command

Figure 6 p. 21 Block diagram and Interfaces of the FMC

Figure 7 p. 22 Structure of word for the “Get FMC Attributes” command

Figure 8 p. 23 Generic structure of a transaction command

Figure 9 p. 25 Structure of a Device Address

Figure 10 p. 26 Code block transfers

Figure 11 p. 29 Arbiter Interfaces

Figure 12 p. 29 Arbitration State Machine

Figure 13 p. 36 “Get blocks” command

Figure 14 p. 37 “Set Page” command

Figure 15 p. 38 “Move Page” command

Figure 16 p. 39 “Erase Block” command

Figure 17 p. 40 “Get Flash Attributes” command

Figure 18 p. 41 “Get FMC Attributes command

Figure 19 p. 42 “Get Counter” command

Figure 20 p. 49 Timing diagram of code block transfer

Figure 21 p. 50 Timing diagram for word transfer

Figure 22 p. 50 Timing diagram for zero length transfer

Figure 23 p. 54 Timing diagram of code block transfer
Draft - for internal distribution only page 11

Flash Memory Controller design specification
List of Figures Version/Issue: 0.3/1
page 12 Draft - for internal distribution only

Flash Memory Controller design specification
List of Tables Version/Issue: 0.3/1
List of Tables

Table 1 p. 5 Document Control Sheet

Table 2 p. 6 Document Status Sheet

Table 3 p. 18 Relationship between device type and memory size

Table 4 p. 24 FMC commands

Table 5 p. 26 FMC performance counters

Table 6 p. 34 Signal definitions for the Initiator interface.

Table 7 p. 36 External interfaces used by the “Get Blocks” command

Table 8 p. 37 External interfaces used by the “Set Page” command

Table 9 p. 38 External interfaces used by the “Move Page” command

Table 10 p. 39 External interfaces used by the “Erase Block” command

Table 11 p. 40 External interfaces used by the “Get Flash Attributes” command

Table 12 p. 41 External interfaces used by the “Get FMC Attributes” command

Table 13 p. 42 External interfaces used by the “Get Counter” command

Table 14 p. 46 Signal definition for the Transaction interface.

Table 15 p. 47 Signal definition for the Inbound interface.

Table 16 p. 48 Signal definition for the Outbound interface.

Table 17 p. 52 Signal definition for the Arbiter Transfer Engine interface.

Table 18 p. 53 Signal definition for the Arbiter FMC interface.
Draft - for internal distribution only page 13

Flash Memory Controller design specification
List of Tables Version/Issue: 0.3/1
page 14 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
Chapter 1

Principals of operation

1.1 Introduction

The Flash Core Set (FCS) consists of two types of Intellectual Property (IP) macros, which
when instantiated in a design, provide an interface between an arbitrary sized set of flash
memory and an external communication bus or serial protocol. The central component of the
core set is the Flash Memory Control (FMC). The FMC manages four flash devices and presents
two 32-bit transfer buses, capable of moving data at up to 40 Mbytes/secs. One bus is used to
transfer information to the FMC (the Inbound bus) and the other transfers information from the
FMC (the Outbound bus). This allows the FMC to be incorporated naturally into a design which
interfaces to a split I/O bus. Depending on the specific flash device used, one FMC is capable
of managing from 4 to 16 Gigabytes of storage.

Operations are initiated through a separate Initiator interface. The FMC queues operations,
allowing the act of operation initiation to be decoupled from its completion. The set of
operations supported by the FMC can be summarized as follows:

— Randomly read flash memory at a granularity of a code block (132 bytes).

— Randomly write flash memory at a granularity of a page (8 Kilobytes).

— Randomly erase flash memory at a granularity of a flash block (512 Kilobytes).

— Access flash device attributes and FMC performance counters.

The FMC is described in additional detail, starting in Section 1.3. In order to increase the
amount of memory in a design, while continuing to scale its performance, a design is
expected to instantiate many FMCs. The Initiator side of such a design would take on the form
illustrated in Figure 2:
Draft - for internal distribution only page 15

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
Here, the design’s Initiator engine responds to requests from the external bus in order to
initiate transactions on any of its FMCs. The case of the transfer side of the design is somewhat
more complicated. As each FMC operates autonomously with respect to its peers they must, of
a necessity, compete with each other for the central resource represented by the design bus. In
order to mediate this competition in a fashion appropriate to the architecture of the FMC, the
core set provides an Arbiter macro. The abstract model of a design is shown in Figure 2:

The coloured boxes represent the functionality provide by the core set: a variable number of
FMCs and two arbiters. One arbiter to mediate inbound transfers and the other to mediate
outbound transfers. One side of each arbiter is connected to the set of FMCs and the other side

Figure 1 Abstract design of a flash memory system using the FCS

Figure 2 Abstract design of a flash memory system using the FCS

design I/O bus

Initiator engine

FMC3FMC2 FMCnFMCn-1FMCn-2FMC1

FMC3

FMC2

FMC1

design I/O bus

Outbound
Arbiter

FMCn

FMCn-1

FMCn-2

Outbound
transfer engine

Inbound
Arbiter

Inbound
transfer engine
page 16 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
to the appropriate in-going or out-going DMA engine. These engines transfer information to
and from the design specific external I/O bus. One final box

1.2 The Flash Devices used by the FMC

The FMC is designed around the Samsung K9XXG08UXM family of flash devices [2]. Devices
from this family provide an 8-bit I/O interface which operates at a maximum rate of 10
Mbytes/sec and therefore, to gain a reasonable match between device and external I/O rates,
four such devices are operated by the FMC in parallel. The largest such device from this family
is the The K9NBG08U5M and is a 4G x 8 bit part and therefore, any one FMC is capable of
managing as many as 16 Gigabytes of flash storage.

Each member of the K9XXG08UXM family is constructed by stacking a number of 1G x 8 bit
chips1. For example, the K9NBG08U5M stacks four such chips. Each chip contains a (2K + 64)
byte cache in order to buffer over the (relatively) long times to read and write its actual
storage cells. This implies accessing information from a flash device is a two-stage operation.
For example, to read information, data is first fetched from cell to cache (a relatively long
operation) and then from cache to user (a relatively short operation). Samsung refers to the
maximum amount of information which can be buffered in the cache as a page. Information is
committed (written) to a device in units of pages, but erased in units of blocks. A device block
contains 64 pages or (128K + 4K) bytes and one chip contains 8K blocks or 512K pages.

As each chip contains its own cache, a device contains as many caches as is does chips. For
example, the K9NBG08U5M contains four. Each chip of a device is controlled independently
through separate chip enables (hereafter referred to as CE0 - CE3). These enables allow each
chip to be programmed and erased simultaneously. However, unfortunately, these enables are
not sufficient to allow simultaneous memory access, as all chips of a device share a common
I/O port. For the FMC, similar chip enables are simply ganged together and used solely to
extend addressing range.

As four devices are managed by the FMC, this implies FMC page and block sizes are four times
the size of any one flash device. That is, a FMC:

— page is 8K + 256 (8448) bytes

— block is 512K + 16K (540672) bytes

The metrics for each member of the family when used within a FMC are summarized in
Table 3:

1. Starting from the K9WAG08U1M.
Draft - for internal distribution only page 17

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
As described below (see Section 1.4.2), the FMC defines the unit of read quanta as the Code
Block. One code block is 132 bytes long and therefore a FMC cache contains sixty-four (64) code
blocks. Whenever the initiator requests access to a code block within a page, the FMC reads
(simultaneously) 33 bytes from each of its four devices. In other words, a code block is
accessed by asserting the same chip enable on all four of its devices. These relationships are all
illustrated in Figure 3:

Table 3 Relationship between device type and memory size

device type chip size number of chips (data) capacity

 K9WAGO8U1M 1 Gigabyte 1 4 Gigabytes

 K9K8G08U0M 2 Gigabytes 2 8 Gigabytes

 K9NBG08U5M 4 Gigabytes 4 16 Gigabytes

Figure 3 Interleaving of code blocks within the FMC

33 bytes

CE0 CE2 CE3CE1 CE0 CE2 CE3CE1

2048 + 64 bytes

K9XXG08UXMK9XXG08UXMK9XXG08UXMK9XXG08UXM
CE0 CE2 CE3CE1 CE0 CE2 CE3CE1

one FMC cache (8192 + 256 bytes)

(132 bytes)

CE0 CE2 CE3CE1 CE0 CE2 CE3CE1 CE0 CE2 CE3CE1 CE0 CE2 CE3CE1

FMC

4 bytes

Code Block
one
page 18 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
1.2.1 Page data structure and data encoding

The design of the FMC assumes the user stores their data Reed-Solomon (R-S) encoded.
Therefore, the organization of a page and access to the information in that page are biased to
maximize

Note, that there is no a-priori way to know whether or not the data in a code block is actually
R-S encoded, This knowledge must be held externally. For this reason, if inbound engines
include decoding their must be a mechanisms to suppress such.

The quanta of R-S processing is the symbol, where typically, one symbol is contained in one
byte (8 bits). A Code block is defined as the sum of the encoded symbols plus the information
necessary to correct these symbols. R-S codes are normally referred to as (n,k) codes, where n is
the total number of symbols in one code block and k is its number of information (or data)
symbols. The difference (n - k), is the number of check symbols and the maximum number of
corrections per code block is half this number or (n - k)/2.

The FMC assumes a (132, 128) code block and therefore, one page contains sixty-four of these
blocks. This encoding corrects up to two symbols in each block, which implies up to 128
corrections are possible in each page. This amount of data correction is somewhat arbitrary
and is designed to maximize the usage of the flash device’s supplemental storage. As we gain
experience in these devices and more fully understand their failure rates this scheme could
change. Encoding adds about 1/4 us of latency to a Write Page transaction and decoding adds
about 1 us of latency to a Read Blocks operation.

These relationships are illustrated in Figure 4:

Figure 4 Page Organization

Data Symbols

32 words

Check Symbols

4 bytes

2112 words

Code Block
Draft - for internal distribution only page 19

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
1.2.2 Flash Attributes

This parameter contains the information returned in the last four bytes of the device’s ID
register. The structure of this parameter is illustrated in Figure 5:

Where:

Device code: TBD

1.3 The FMC

The FMC is designed around the Samsung K9XXG08UXM family of flash devices [2]. Devices
from this family provide an 8-bit I/O interface which operates at a maximum rate of 10
Mbytes/sec and therefore, to gain a reasonable match between device and external I/O rates,
four such devices are operated by the FMC in parallel. The FMC implements the following
functions:

Read one to sixty-three blocks: Read one to sixty-three blocks of information from a specified
device address. Fetch the page from block to cache and then read the appropriate
data from cache. Transfer the read data to the specified remote address. Increment
the appropriate performance counters (see Section 1.5).

Write page: Write one page (8192 bytes) to a specified device address. Transfer the data for the
page from the specified remote address. Increment the appropriate performance
counters (see Section 1.5).

Move page: Move the data from one specified page address to another specified page address.
This operation entails no activity on the remote memory bus. Increment the
appropriate performance counters (see Section 1.5).

Figure 5 Structure of the returned word for the “Get Flash Attributes” command

032

chip number

10

device code

19 812141516182022232425262831

of programmed
cell type

interleave program
cache program

block size
page size

organization
redundant area si

access time
plane number
plane size
page 20 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
Erase block: Erase the data from the specified block address. This operation entails no activity
on the remote memory bus. Increment the appropriate performance counters (see
Section 1.5).

Read Flash attributes: Retrieve on board chip information for the four devices of a slice.
Return the sampled value in the result.

Read FMC Attributes: Establish the conditions under which the specified FMC will assert an
interrupt. Return the sampled value in the result.

Read Counter: Sample the current value of the specified performance counter (see
Section 1.5). Return the sampled value in the result.

The interfaces are described in Chapters 2 and 4. A block diagram expressing these interfaces
is illustrated in Figure 6:

Figure 6 Block diagram and Interfaces of the FMC

reset

flash1

clock

Initiator
interface

enable

Argument

interface
Inbound

Request Grant Data-Out Command

argumentcommand enable clock inputalmost full full

Start-Of-Block Error

interface
Transaction

Argument
FIFO

(32 x n)

interface
Outbound

RequestGrantData-InStart-Of-BlockError

Performance
Registers

flash2

flash3

flash4

Command
FIFO

(32 x n)

Flash Management and Control
Draft - for internal distribution only page 21

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
1.3.1 FMC Attributes

this section is not complete.

The FMC has three parameters:

— inbound/outbound arbitration timeout

— definition of almost full (same for both FIFOs)

1.3.2 FMC Resets

TBD

1.4 Transactions

The FMC process requests in units of transaction. Transactions originate with an Initiator. The
specification of a transaction request is called a command. The FMC is single threaded, i.,e., it
can only perform a single transaction at a time. However, it contains two FIFOs which are used
to buffer transaction requests while busy and therefore, the FMC is capable of processing
requests from multiple initiators. In order to allow the initiator to operate in a clock domain
independent of the FMC these are asynchronous FIFOs.

While of course, different transactions perform different functions, all transactions follow the
same three phases:

— Initiator constructs a command. The command includes the type of operation to
perform and the parameters for that specific operation. For example, to read data
from a flash device requires a specification of the chip, block and page to read as well
as the address where the read data is to be returned.

— Using the FMC’s Initiator Interface, the initiator queues the command to the FMC. This
interface is specified in Section 1.3.

Figure 7 Structure of word for the “Get FMC Attributes” command

032

chip number

10

device code

19 812141516182022232425262831

cell type
page 22 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
— Whenever the FMC is both idle and its command request FIFOs are not empty, a
command is dequeued, decoded, and the necessary transaction initiated. The FMC is
now busy.

— At some point, while busy, the FMC must either fetch or send data. requires the
services of either an inbound outbound transfer engine. An inbound engine is used to
fetch data and an outbound engine to send data. The transaction continues until the
appropriate engine is actually required and at that point the FMC arbitrated for the
appropriate engine.

— When granted, the FMC performs the necessary transfer by exchanging data between
engine and FMC in units of 32-bit words. For such an eventuality, the FMC specifies
both an inbound and outbound interfaces (see Section 1.6).

— Once the transaction is complete, the FMC (conditionally) increments the appropriate
performance counter(s).

1.4.1 Commands

Commands have the structure illustrated in Figure 8:

Where:

Has argument: Commands may have either zero or one argument. This field determines the
number of command parameters. If the field is asserted, the command has an
argument. If the command does specify an argument, the value of this argument
is registered into argument port specified in xxx.

Move word: This field determines whether or not the command implies a transfer of words or
code blocks (see Section 1.4.3). If the field is not asserted, the command transfers
code blocks either to or from the FMC. If this field is asserted, the command
transfers zero, one, or more 32-bit words. In addition to specifying the structure of
the data transferred, this field determines the interpretation of the Length field
(see below).

Figure 8 Generic structure of a transaction command

0132

Move word

Function code

Has argument

210 4

Length

Parameter
Draft - for internal distribution only page 23

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
Function code: This field contains a small integer which enumerates the function to be
performed by the command. The possible values for this field are enumerated in
Table 4.

Length: This field specifies the transfer length. Its interpretation depends on the value of
the Move word field (see above). If the Move word field is asserted, the length
field is interpreted as the number of code blocks to transfer, where a value of zero
(0) corresponds to one block, a value of one (1) to two blocks, a value of two (2) to
three blocks, and so forth. If the Move word field is not asserted, this field is
interpreted as the number of 32-bit words to transfer, where a value of zero (0)
corresponds to none, a value of one (1) to one word, a value of two (2) to two words,
and so forth.

Parameter: This field determines the command’s parameterization. Its interpretation is
function specific. For example, commands which target the FMC’s flash devices
(for example: Set Page or Erase Block) interpret the this field as a flash Device
address (see Section 1.4.2). See the specific description for the corresponding
command in order to determine the structure of this field.

The command set is enumerated within Table 4:

1.4.2 Addressing

Commands which target the FMC’s flash devices (for example, read, write, or erase), interpret
the command parameter as a flash Device address. The structure of a device address is
illustrated in Figure 9:

Table 4 FMC commands

Command
Has

argument?
Move
word?

Function
code Length described in:

Get Flash Attributes Yes Yes 0 1 Section 3.6

Get FMC Attributes Yes Yes 1 1 Section 3.7

Get Counter Yes Yes 2 1 Section 3.8

Erase Block No Yes 3 0 Section 3.5

Get Blocks Yes No 0 n1

1. where n can vary from zero (0) to sixty-three (63).

Section 3.2

Set Page Yes No 2 63 Section 3.3

Move Page Yes No 3 0 Section 3.4
page 24 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
Where the device address is composed of:

Page: This field specifies the page number whose data is to be accessed. Page numbers
vary from zero (0) to 63 (decimal).

Block: This field specifies the block number which contains the page whose data is to be
accessed. Block numbers vary from zero (0) to 8,191 (decimal).

Chip: This field specifies the block number which contains the page whose data is to be
accessed. Chip numbers vary from zero (0) to 3.

1.4.3 Units of data transfer

A transaction moves data in units of words or code blocks.

— words

— code blocks

Note, that there is no a-priori way to know whether or not the data in a code block is actually
R-S encoded, This knowledge must be held externally. For this reason, if inbound engines
include decoding their must be a mechanisms to suppress such.

Engine and FMC transfer information in units of code blocks. A block contains 132 symbols of R-S
encoded data where a symbol is contained in one byte. The block is further divided into 128
Data symbols and four (4) Check symbols. As this data is exchanged between engine and FMC
through a 32-bit interface port, data symbols are transferred in thirty-two (32) clocks and
check symbols in a single (1) clock. The first four symbols are transferred in the zeroth clock
and the last four symbols in the thirty-second clock. Within any one clock, symbols are found in
increasing order with respect to the thirty-two fields of the data port. For example, on the first
clock of a block transfer, the fifth symbol is contained in fields 0-7, the sixth symbol in fields
8-15, the seventh symbol in fields 16-23, the eight symbol in fields 24-31, and so-forth. The
check symbols are always the last symbols of a block (increasing clock order). The number of
blocks in any one transaction can vary from one (1) to sixty-four (64) and is specified by the
FMC to the transfer engine as a field through the CMND port of the appropriate transfer
interface. These relationships are illustrated in Figure 10:

Figure 9 Structure of a Device Address

19 0

Page
Block

621

Chip

22
Draft - for internal distribution only page 25

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
1.5 Performance counters

Each FMC maintains a set of counters to monitor its health. These are 32-bit, non-saturating
counters1. These counters are (and may, only be) re-zeroed when the FMC is reset (see
Section 1.3.2). An enumeration of these counters is given in Table 5:

Figure 10 Code block transfers

Data Symbols (128)

0 32 33

Check Symbols (4)

1 2 3 4 5 6 7 8 9 10 11 12 n-4 n-3 n-2 n-1 n

increasing clock

code block

one transaction

increasing clock

1. The counter simply rolls over when it overflows.

Table 5 FMC performance counters

Name Number described in...

 Reads 0 Section 1.5.1

 Writes 1 Section 1.5.2

 Moves 2 Section 1.5.3

 Erasures 3 Section 1.5.4

 Device Errors 4 Section 1.5.5

 Arbitration time 5 Section 1.5.6

 Busy time 6 Section 1.5.7

 Arbitration timeouts 7 Section 1.5.8

 Command Congestion 8 Section 1.5.9
page 26 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
The Get Counter command (see Section 3.8) is used to sample the current value of any one of
these counters. The parameter for this command is the number of the counter to be sampled.
The correspondence between counter name and number is enumerated in Table 5. In order to
understand what is being counted, there are two time intervals which must be defined:

Busy: The interval of time (for any one transaction) from when the FMC dequeues a
pending transaction request until the FMC could potentially begin a new
transaction. I.e., the time spent in a transaction. Time is measured in units of clock
tics.

Arbitrating: The interval of time (for any one transaction) from which the FMC requests the
services of a transfer engine until the arbiter grants that request. The FMC
constrains how long in will wait for arbitration (the arbitration timeout). Note,
that arbitration time is one component of a transactions’s busy time. Time is
measured in units of clock tics.

1.5.1 The Reads counter

This counter contains the total number of Get Blocks transactions since the FMC was reset and
is incremented at the conclusion (successful or otherwise) of each Get Blocks transaction (see
Section 3.2).

1.5.2 The Writes counter

This counter contains the total number of Set Page transactions since the FMC was reset and is
incremented at the conclusion (successful or otherwise) of each Set Page transaction (see
Section 3.3).

1.5.3 The Moves counter

This counter contains the total number of Move Page transactions since the FMC was reset and
is incremented at the conclusion (successful or otherwise) of each Move Page transaction (see
Section 3.4).

1.5.4 The Erasures counter

This counter contains the total number of Erase Block transactions since the FMC was reset and
is incremented at the conclusion (successful or otherwise) of each Erase Block transaction (see
Section 3.5).
Draft - for internal distribution only page 27

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
1.5.5 The Device Errors counter

This counter contains the total number of flash device errors since the FMC was reset. This
counter can be (potentially) incremented for that any transaction which accesses the flash.
However, it may increment at most once and only once per transaction.

1.5.6 The Arbitration time counter

The total amount of time (in clock tics), since the FMC was reset, spent in arbitration.

1.5.7 The Busy time counter

The total amount of time (in clock tics), since the FMC was reset, spent busy.

1.5.8 The Arbitration timeouts counter

The total number of times, since the FMC was reset, an arbitration request timed out.

1.5.9 The Command Congestion counter

The total number of times, since the FMC was reset, the FMc’s request FIFO was not empty, while
the FMC was busy.

1.6 The Arbiter

Because FMCs operate autonomously, they potentially require the services of any one engine
simultaneously. The arbitrator contains a state machine responsible for deciding which FMC is
granted an engine in such an eventuality. Note, that each read and write engine has their own
arbitration engine, however, the behaviour of both engines are identical. The arbitrator’s
states and transitions are illustrated in Figure 12. An arbitrator takes input from both its
corresponding engine and a set of FMCs when making its decisions. The arbitrator sees its
paired engine as either idle or busy. A engine is considered busy under any one of the
following conditions:

— A transaction is in progress

— Its data FIFO is more then 3/4 full

— Its pending FIFO is more then 3/4 full
page 28 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
A block diagram expressing these functions and the interface between arbitrator and FMC is
illustrated in Figure 11:

Figure 11 Arbiter Interfaces

Figure 12 Arbitration State Machine

request

Clock

FMC1

grant

Start

interface
Transfer Engine

request

FMC2

grant request

FMC2

grant request

FMCn-2

grant request

FMCn-1

grant request

FMCn

grant

DoneReady Reset

Ready

arbitrating

idle

sampling

busy

Working-Set is empty

Grant & Start

Ready

Request is asserted

 Done
Draft - for internal distribution only page 29

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
Asserted request signals are ignored by the arbitrator while it is busy. The flow of work
through the arbitrator is as follows:

— A FMC spontaneously requests the services of an engine by asserting its request signal.

— Whenever the engine is ready and when one or more FMC request signals are asserted,
the arbitrator is carried from its “idle” to its “sampling” state.

— In its “sampling” state, the arbitrator samples the state of all request signals,
harvesting the set of asserted signals. This set is called the arbitrator’s working set. If
the working set is empty, the arbitrator is carried back to its “idle” state. If the working
set is not empty, the arbitrator passes from its “sampling” to its “arbitrating” state.

— In its “arbitrating” state, the arbitrator first determines whether its working set is
empty. If the working set is empty, the arbitrator is carried back to its “sampling”
state. If the working set is not empty, the arbitrator picks one member randomly from
the set. It strikes this member off the set and asserts the grant signal to the
corresponding FMC. This carries the arbitrator from its “arbitrating” to its “busy”
state.

— After the granted FMC finishes its transfer it de-asserts its pending signal. Typically,
this results in the engine becoming not busy. However, if the engine in partnership
with the transfer engine cannot keep up, the transfer engine’s FIFOs could back up
and even though the transaction between FMC and transfer engine is complete, the
engine may continue to assert busy. In any case, once the transfer engine goes not
busy, the arbitrator is carried from its “busy” state back to its “arbitrating” state.

1.6.1 Arbiter Attributes

TBD

1.6.2 Arbiter Resets

TBD

1.7 Performance

Ignore this section. Its a work in progress and is not correct.

The design is targeted to sustain an access rate of up to 100 Megabytes/sec (either read or write) and an
erase rate of up to 500 Megabytes/sec.

To understand how well such a box could perform, assume data is distributed randomly within the box
and performance is measured as the time to read one sector (512 bytes) of data and present this data at
page 30 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
the external interface. Call this operation a transaction. Once inside the PCI bus, for any one FMC in
isolation, the transaction time has the following components:

i. queue and start transaction. Estimated at 200 ns.

ii. fetch time from flash cell to flash cache estimated at 20 us.

iii. transfer time on the PCI bus. Estimated at 512/4 x 30 ns = 4 us.

iv. Reed-Solomon decode. Estimated at 1 us.

v. process completion interrupt. Estimated at 200 ns.

Naively this corresponds to a transaction time of around 25.4 us. However, each FMC can perform up to
32 operations concurrently which allows flash transfer time to effectively overlap flash fetch time.
Therefore, the irreducible transaction time is more like 5.4 us. As the box has 16 buses which operate
essentially in parallel, this gives a transaction rate of around 3 million transactions/second. If access is
random, there is some real possibility of achieving this number. Of course, this number does not take
into account software, interface and management overhead, as well as the fact that any one transaction
may require more then one sector of data. I. e., your mileage may vary.
Draft - for internal distribution only page 31

Flash Memory Controller design specification
Chapter 1 Principals of operation Version/Issue: 0.3/1
page 32 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 2 The Initiator Interface Version/Issue: 0.3/1
Chapter 2

The Initiator Interface

2.1 Conventions

The interface consists of a number of signals and ports. Any entity which accesses the interface
is called an initiator. A port consists of a data register and the signals necessary for the initiator
to access that register. The width of a data register is specified in bits and register width is port
dependent. The contents of a data register are specified in units of field, where a field is
specified as (bit) offset and length within the corresponding register. The behaviour of a field
fits into one of three classes:

Not defined: Undefined fields are identified as Must Be Zero (MBZ) and are illustrated greyed
out. An MBZ field will:

— Read back as zero

— Ignore writes

— Reset to zero

Read/Write: A Reset will set a read/write field to zero.

Read-only: Read-only fields are illustrated lightly grayed-out along with their value. Any
read-only field will:

— Ignore writes

— Reset to zero, unless otherwise documented

Any field used as a boolean has a width of one bit. A value of one (1) is used to indicate its set
or true sense and a value of zero (0) to indicate its clear or false sense. Field numbering for
registers is such that offset zero (0) corresponds to a register’s Least Significant Bit (LSB) and
offset width - 1 is the register’s Most Significant Bit (MSB).

Note: The signal descriptions given below assume that the device enable for the FMC is asserted.
Draft - for internal distribution only page 33

Flash Memory Controller design specification
Chapter 2 The Initiator Interface Version/Issue: 0.3/1
2.2 Initiator Interface

TBD. The signal definitions for this port are specified in Table 6:

2.3 Timing

TBD.

Table 6 Signal definitions for the Initiator interface.

Signal name I/O Description

ENW In The interface write enable. An active low signal that enables writing
to the interface on the rising edge of CKW while ENW is active.

CKW In The interface write clock. The rising edge clocks data into both CMND
and PARM while ENW is active. On the rising edge this signal also
updates the FULL and ALMOST_FULL flags (see below).

CMND[0:31] In Command data inputs. Inputs are sampled on the rising edge of CKW
while ENW is active. See Section 1.4.1 for the specification of this
structure of the data written to this port.

PARM[0:31] In Parameter data Inputs. Inputs are sampled on the rising edge of CKW
while ENW is active. See Section 1.4.1 for the specification of this
structure of the data written to this port.

ALMOST_FULL Out FMC’s command FIFO Almost Full flag. This signal remains asserted
while this condition remains true. T The definition of this signal is an
attribute of the FMC. See xxx for a description of the timing of this sig-
nal with respect to changes in the FIFO’s state.

FULL Out FMC’s command FIFO Full flag. This signal remains asserted while
this condition remains true. See xxx for a description of the timing of
this signal with respect to changes in the FIFO’s state.
page 34 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 3 Initiator Commands Version/Issue: 0.3/1
Chapter 3

Initiator Commands

3.1 Conventions

The interface consists of a number of separately addressable Ports. Any entity which accesses
the interface is called an initiator. A port consists of a data register and the signals necessary
for the initiator to access that register. The width of a data register is specified in bits and
register width is port dependent. The contents of a data register are specified in units of field,
where a field is specified as (bit) offset and length within the corresponding register. The
behaviour of a field fits into one of three classes:

Not defined: Undefined fields are identified as Must Be Zero (MBZ) and are illustrated greyed
out. An MBZ field will:

— Read back as zero

— Ignore writes

— Reset to zero

Read/Write: A Reset will set a read/write field to zero.

Read-only: Read-only fields are illustrated lightly grayed-out along with their value. Any
read-only field will:

— Ignore writes

— Reset to zero, unless otherwise documented

Any field used as a boolean has a width of one bit. A value of one (1) is used to indicate its set
or true sense and a value of zero (0) to indicate its clear or false sense. Field numbering for
registers is such that offset zero (0) corresponds to a register’s Least Significant Bit (LSB) and
offset width - 1 is the register’s Most Significant Bit (MSB).

Note: The signal descriptions given below assume that the device enable for the FMC is asserted.
Draft - for internal distribution only page 35

Flash Memory Controller design specification
Chapter 3 Initiator Commands Version/Issue: 0.3/1
3.2 Get Blocks

Read one to sixty-four Code Blocks worth of information from flash memory. The
specification of which blocks are accessed is determined by the parameter whose value is a
Device address. See Figure 9 within Section 1.2 for the specification of a device address.
Transfer the read data to the Remote address specified by the command argument. When the
transaction is complete, increment the appropriate statistics counters (see Section 3.2.2).

The external interfaces for which this command requires arbitration by the FMC are
enumerated in Table 7:

3.2.1 Argument

The argument for this transaction is the Remote address which specifies the location where
the read information are to be returned. A remote address is simply a 32-bit value whose
interpretation is agreed on between Initiator and the FMC’s Outbound engine.

3.2.2 Performance counters incremented

Each transaction will increment the reads counter. See Section 1.5 for more information on
these counters and how they may be accessed.

Figure 13 “Get blocks” command

Table 7 External interfaces used by the “Get Blocks” command

Interface Used?

Flash Yes

Outbound Yes

Inbound No

0132

Move word

Function code

Has argument

210 4

Length

Device address

100 1
page 36 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 3 Initiator Commands Version/Issue: 0.3/1
3.3 Set Page

Write one page of information to flash memory. The specification of which page to write is
determined by the command parameter whose value is a Device address. See Figure 9 within
Section 1.2 for the specification of a device address. Transfer the data to be written from the
local address specified by the command argument. When the transaction is complete,
increment the appropriate statistics counters (see Section 3.2.2).

The external interfaces for which this command requires arbitration by the FMC are
enumerated in Table 8:

3.3.1 Argument

The argument for this transaction is the Local address which specifies the location where the
information to be written is found. A local address is simply a 32-bit value whose
interpretation is agreed on between Initiator and the FMC’s Inbound engine.

3.3.2 Performance counters incremented

Each transaction will increment the write counter. It may also increment the device error
counter. See Section 1.5 for more information on these counters and how they may be
accessed.

Figure 14 “Set Page” command

Table 8 External interfaces used by the “Set Page” command

Interface Used?

Flash Yes

Outbound No

Inbound Yes

0132

Move word

Function code

Has argument

210 4

Length

Device address

110 1111111
Draft - for internal distribution only page 37

Flash Memory Controller design specification
Chapter 3 Initiator Commands Version/Issue: 0.3/1
3.4 Move Page

Move one page of information from one location in flash memory to another. The specification
of which page to move is determined by the command parameter whose value is a Device
Address. The destination address is specified by the command argument whose value is a
Device Address. See Figure 9 within Section 1.2 for the specification of a device address. When
the transaction is complete, increment the appropriate statistics counters (see Section 3.2.2).

The external interfaces for which this command requires arbitration by the FMC are
enumerated in Table 9:

3.4.1 Argument

The low-order 22 bits of the argument specify the destination address. The high-order 10 bits
will be zero. The destination address is specified as a Device Address. See Figure 9 within
Section 1.2 for the specification of a device address.

3.4.2 Performance counters incremented

Each transaction will increment the move counter. It may also increment the device error
counter. See Section 1.5 for more information on these counters and how they may be
accessed.

Figure 15 “Move Page” command

Table 9 External interfaces used by the “Move Page” command

Interface Used?

Flash Yes

Outbound Yes

Inbound No

0132

Move word

Function code

Has argument

210 4

Length

Device address

011 1000000
page 38 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 3 Initiator Commands Version/Issue: 0.3/1
3.5 Erase Block

Erase one block of information (512 Kilobytes) at the specified device address. When the
transaction is complete, increment the appropriate statistics counters (see Section 3.2.2). The
specification of which block to erase is determined by the command parameter whose value is
a Device address. See Figure 9 within Section 1.2 for the specification of a device address.

Note: For this command, the page field of the device address is ignored and must be MBZ (0).

When the transaction is complete, increment the appropriate statistics counters (see
Section 3.2.2).

The external interfaces for which this command requires arbitration by the FMC are
enumerated in Table 10:

3.5.1 Argument

None.

Figure 16 “Erase Block” command

Table 10 External interfaces used by the “Erase Block” command

Interface Used?

Flash Yes

Outbound No

Inbound No

0132

Move word

Function code

Has argument

210 4

Length

Device address

111 0000000
Draft - for internal distribution only page 39

Flash Memory Controller design specification
Chapter 3 Initiator Commands Version/Issue: 0.3/1
3.5.2 Performance counters incremented

Each transaction will increment the erase counter. It may also increment the device error
counter. See Section 1.5 for more information on these counters and how they may be
accessed.

3.6 Get Flash Attributes

Read the ID register of one of the four flash devices managed by the FMC. This register is
called the Flash Device Attributes. The attributes are contained in a word whose structure is
described in Section 1.2.2. Return this word to the Remote address specified by the command
argument.

Usage of the command parameter is completely user determined. Its value is specified by the
initiator of the command and is both unused and is uninterpreted by the FMC. The external
interfaces for which this command requires arbitration by the FMC are enumerated in Table 11:

3.6.1 Argument

The argument for this transaction is the Remote address which specifies the location where
the word containing the attributes are to be returned. A remote address is simply a 32-bit
value whose interpretation is agreed on between Initiator and the FMC’s Outbound engine.

Figure 17 “Get Flash Attributes” command

Table 11 External interfaces used by the “Get Flash Attributes” command

Interface Used?

Flash Yes

Outbound Yes

Inbound No

0132

Move word

Function code

Has argument

210 4

Length

Initiator defined

100 1000001
page 40 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 3 Initiator Commands Version/Issue: 0.3/1
3.6.2 Performance counters incremented

None.

3.7 Get FMC Attributes

Sample and return the FMC’s attributes. The attributes are contained in a word whose
structure is described in Section 1.3.1. Return this word to the Remote address specified by the
command argument.

Usage of the command parameter is completely user determined. Its value is specified by the
initiator of the command and is both unused and is uninterpreted by the FMC. The external
interfaces for which this command requires arbitration by the FMC are enumerated in
Table 12:

3.7.1 Argument

The argument for this transaction is the Remote address which specifies the location where
the word containing the attributes are to be returned. A remote address is simply a 32-bit
value whose interpretation is agreed on between Initiator and the FMC’s Outbound engine.

Figure 18 “Get FMC Attributes command

Table 12 External interfaces used by the “Get FMC Attributes” command

Interface Used?

Flash No

Outbound Yes

Inbound No

0132

Move word

Function code

Has argument

210 4

Length

Initiator defined

101 1000001
Draft - for internal distribution only page 41

Flash Memory Controller design specification
Chapter 3 Initiator Commands Version/Issue: 0.3/1
3.7.2 Performance counters incremented

None.

3.8 Get Counter

Sample the value of a specified performance counter. Return the value of the read counter to
the Remote address specified by the command argument. The command’s parameter field
contains a small value which enumerates which particular counter to sample and return. The
correspondence between value and counter is described in Section 1.5.

Usage of the remainder of the command parameter is completely user determined. Its value is
specified by the initiator of the command and is both unused and is uninterpreted by the FMC.
The external interfaces for which this command requires arbitration by the FMC are
enumerated in Table 13:

3.8.1 Argument

The argument for this transaction is the Remote address which specifies the location where
the word containing the read counter is to be returned. A remote address is simply a 32-bit
value whose interpretation is agreed on between Initiator and the FMC’s Outbound engine.

Figure 19 “Get Counter” command

Table 13 External interfaces used by the “Get Counter” command

Interface Used?

Flash No

Outbound Yes

Inbound No

Initiator defined

0132

Move word

Function code

Has argument

210 4

Length

Register

110 1000001

14
page 42 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 3 Initiator Commands Version/Issue: 0.3/1
Draft - for internal distribution only page 43

Flash Memory Controller design specification
Chapter 3 Initiator Commands Version/Issue: 0.3/1
page 44 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 4 The Transfer Interface Version/Issue: 0.3/1
Chapter 4

The Transfer Interface

4.1 Conventions

The interface consists of a number of separately addressable Ports. Any entity which accesses
the interface is called a transfer engine. A port consists of a data register and the signals
necessary for the transfer engine to access that register. The width of a data register is
specified in bits and data register width is port dependent. The contents of a data register are
specified in units of field, where a field is specified as (bit) offset and length within the
corresponding register. The behaviour of a field fits into one of three classes:

Not defined: Undefined fields are identified as Must Be Zero (MBZ) and are illustrated greyed
out. An MBZ field will:

— Read back as zero

— Ignore writes

— Reset to zero

Read/Write: A Reset will set a read/write field to zero.

Read-only: Read-only fields are illustrated lightly grayed-out along with their value. Any
read-only field will:

— Ignore writes

— Reset to zero, unless otherwise documented

Any field used as a boolean has a width of one bit. A value of one (1) is used to indicate its set
or true sense and a value of zero (0) to indicate its clear or false sense. Field numbering for
Draft - for internal distribution only page 45

Flash Memory Controller design specification
Chapter 4 The Transfer Interface Version/Issue: 0.3/1
registers is such that offset zero (0) corresponds to a register’s Least Significant Bit (LSB) and
offset width - 1 is the register’s Most Significant Bit (MSB).

Note: The signal descriptions given below assume that the device enable for the FMC is asserted.

4.2 Transaction Interface

TBD.

4.3 Inbound Interface

The signals of this interface are connected to both the inbound arbiter and transfer engine. The
FMC uses this interface for each transaction which requires moving data to the FMC. See, for
example, the Set Page transaction described in Section 3.3 which writes code blocks to the
FMC’s flash memory. The FMC signifies its interest in using the transfer engine by asserting its
RQST signal. This signal is asserted once, and only once, for each transaction. The specification
of the transaction corresponding to the request is found in the Transaction Interface described
in Section 4.2. In particular, the tenure of any one transaction on this interface is determined by
the values of the Move Word and Length fields of the command registered within the CMND
port (see Section 1.4.1).

Table 14 Signal definition for the Transaction interface.

Signal name I/O Description

CMND[0:31] Out The transaction command. The specification of a command is found
in Section 1.4.1. Its value becomes valid at the same time RQST is
asserted (see above) and remains valid for the duration of the trans-
action.

ARG[0:31] Out The transaction command argument. The specification of an argu-
ment is found in xxx. Its value becomes valid at the same time RQST
is asserted (see above) and remains valid for the duration of the
transaction.
page 46 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 4 The Transfer Interface Version/Issue: 0.3/1
4.4 Outbound Interface

The signals of this interface are connected to both the outbound arbiter and transfer engine.
The FMC uses this interface for each transaction which requires moving data from the FMC.
See, for example, the Get Blocks transaction described in Section 3.2 which reads code blocks
from the FMC’s flash memory. The FMC signifies its interest in using the transfer engine by
asserting its RQST signal. This signal is asserted once, and only once, for each transaction. The
specification of the transaction corresponding to the request is found in the Transaction
Interface described in Section 4.2. In particular, the tenure of any one transaction on this
interface is determined by the values of the Move Word and Length fields of the command
registered within the CMND port (see Section 1.4.1).

Table 15 Signal definition for the Inbound interface.

Signal name I/O Description

RQST Out This signal is asserted by the FMC whenever it requires the services
of its corresponding inbound transfer engine. This signal is con-
nected to the inbound Arbiter (see Section 1.6). It remains asserted
until the GRNT signal (see below) is asserted by the arbiter. Once
granted (see below), the FMC will not re-assert this signal until the
transfer corresponding to the request has completed. The signals on
the Transaction Interface (see Section 4.2) become valid when RQST
is asserted and remain valid until the transfer is finished.

GRNT In This signal is asserted for one clock by the inbound Arbiter (see
Section 1.6) in response to the FMC’s assertion of its RQST signal (see
above). It grants the FMC the services of its corresponding inbound
transfer engine for one transfer. This signal is connected to the
inbound arbiter. In response to receiving this signal the FMC will
de-assert its RQST signal (see above). If the arbiter does not assert
GRNT within a specified amount of time, the FMC will abort the out-
standing request.

SOB In Start of Code Block or Word. This signal is asserted for one clock for
each block or word in the transfer. It is always asserted at the begin-
ning of the block. It specifies that either the word or first four sym-
bols of any one block are valid (see Section 1.4.3 for a discussion of
transfer structure). The value of either a word or four symbols of a
code block are presented on the DIN port described below.

DIN[0:31] In Either the value of a word or the value of the “next” four symbols of
a code block. A word or the first four symbols of a code block are
registered on this port whenever the SOB signal is asserted (see
above). See Section 1.4.3 for a discussion of transfer blocks.

ERR Out Specifies whether or not the transaction completed successfully.
This signal is asserted for one clock at the end of the transfer.
Draft - for internal distribution only page 47

Flash Memory Controller design specification
Chapter 4 The Transfer Interface Version/Issue: 0.3/1
4.5 Transfer Timing

Relative timing is independent of whether or not the transfer is inbound or outbound. It is
however, dependent on the length and type of transfer. The length and type of the transfer are
determined by the values of the Move Word and Length fields of the command registered
within the CMND port (see Section 1.4.1).There are three cases to consider, each of which are
described below. Note that each example (for pedagogical reasons) shows the ERR flag
asserted. Of course, in reality, this flag will be asserted at most infrequently and hopefully not
at all.

Table 16 Signal definition for the Outbound interface.

Signal name I/O Description

RQST Out This signal is asserted by the FMC whenever it requires the services
of its corresponding outbound transfer engine. This signal is con-
nected to the outbound Arbiter (see Section 1.6). It remains asserted
until the GRNT signal (see below) is asserted by the arbiter. Once
granted (see below), the FMC will not re-assert this signal until the
transfer corresponding to the request has completed. The signals on
the Transaction Interface (see Section 4.2) become valid when RQST
is asserted and remain valid until the transfer is finished.

GRNT In This signal is asserted for one clock by the outbound Arbiter (see
Section 1.6) in response to the FMC’s assertion of its RQST signal (see
above). It grants the FMC the services of its corresponding outbound
transfer engine for one transfer. This signal is connected to the out-
bound arbiter. In response to receiving this signal the FMC will
de-assert its RQST signal (see above). If the arbiter does not assert
GRNT within a specified amount of time, the FMC will abort the out-
standing request.

SOB Out Start of Code Block or Word. This signal is asserted for one clock for
each block or word in the transfer. It is always asserted at the begin-
ning of the block. It specifies that either the word or first four sym-
bols of any one block are valid (see Section 1.4.3 for a discussion of
transfer structure). The value of either a word or four symbols of a
code block are presented on the DOUT port described below.

DOUT[0:31] Out Either the value of a word or the value of the “next” four symbols of
a code block. A word or the first four symbols of a code block are
registered on this port whenever the SOB signal is asserted (see
above). See Section 1.4.3 for a discussion of transfer blocks.

ERR Out Specifies whether or not the transaction completed successfully.
This signal is asserted for one clock at the end of the transfer.
page 48 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 4 The Transfer Interface Version/Issue: 0.3/1
4.5.1 Transfer one or more code blocks

Code block transfers are done by both the inbound and outbound interfaces. As an example,
see the Set Page transaction discussed in Section 3.3. The number of code blocks to transfer is
determined by the Length field of the transaction’s command. Each code block takes
thirty-three (33) clock cycles to transfer. The first 32 clocks provide the 128 data symbols for
the block and the last clock provides its four check symbols. An example, showing the transfer
of three code blocks, is illustrated in Figure 20:

4.5.2 Transfer one word

Word transfers are currently done by only the outbound interface (but, this could change). As
an example, see the Get Counter transaction discussed in Section 3.8. The number of words to
transfer is determined by the Length field of the transaction’s command. An example is
illustrated in Figure 21:

Figure 20 Timing diagram of code block transfer

CLK

SOB

RQST

GRNT

DS32

ARG

DS1DOUT CS DS32DS1 CS DS32DS1 CS

CMND

block1 block2 block3

ERR
Draft - for internal distribution only page 49

Flash Memory Controller design specification
Chapter 4 The Transfer Interface Version/Issue: 0.3/1
4.5.3 Zero-Length Transfers

Zero-Length transfers are currently done by only the outbound interface. As an example, see
the Erase Block transaction discussed in Section 3.5. For transactions of this type the Move
Word field of the command will be asserted and the Length field will be zero. An example is
illustrated in Figure 22:

Figure 21 Timing diagram for word transfer

CLK

SOB

RQST

GRNT

ARG

DDOUT

CMND

ERR

Figure 22 Timing diagram for zero length transfer

CLK

SOB

RQST

GRNT

ARG

DOUT

CMND

ERR
page 50 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 5 The Arbiter Interface Version/Issue: 0.3/1
Chapter 5

The Arbiter Interface

5.1 Conventions

The interface consists of a number of separately addressable Ports. Any entity which accesses
the interface is called a transfer engine. A port consists of a data register and the signals
necessary for the transfer engine to access that register. The width of a data register is
specified in bits and data register width is port dependent. The contents of a data register are
specified in units of field, where a field is specified as (bit) offset and length within the
corresponding register. The behaviour of a field fits into one of three classes:

Not defined: Undefined fields are identified as Must Be Zero (MBZ) and are illustrated greyed
out. An MBZ field will:

— Read back as zero

— Ignore writes

— Reset to zero

Read/Write: A Reset will set a read/write field to zero.

Read-only: Read-only fields are illustrated lightly grayed-out along with their value. Any
read-only field will:

— Ignore writes

— Reset to zero, unless otherwise documented

Any field used as a boolean has a width of one bit. A value of one (1) is used to indicate its set
or true sense and a value of zero (0) to indicate its clear or false sense. Field numbering for
Draft - for internal distribution only page 51

Flash Memory Controller design specification
Chapter 5 The Arbiter Interface Version/Issue: 0.3/1
registers is such that offset zero (0) corresponds to a register’s Least Significant Bit (LSB) and
offset width - 1 is the register’s Most Significant Bit (MSB).

Note: The signal descriptions given below assume that the device enable for the FMC is asserted.

5.2 Transfer Engine Interface

The signals of this interface are connected to both the inbound arbiter and transfer engine. The
FMC uses this interface for each transaction which requires moving data to the FMC. See, for
example, the Set Page transaction described in Section 3.3 which writes code blocks to the
FMC’s flash memory. The FMC signifies its interest in using the transfer engine by asserting its
RQST signal. This signal is asserted once, and only once, for each transaction. The specification
of the transaction corresponding to the request is found in the Transaction Interface described
in xxx. In particular, the tenure of any one transaction on this interface is determined by the
values of the Move Word and Length fields of the command registered within the CMND port
(see Section 1.4.1).

Table 17 Signal definition for the Arbiter Transfer Engine interface.

Signal name I/O Description

READY In This signal is asserted for one clock by the Transfer Engine in
response to the FMC’s assertion of its RQST signal (see above). It
grants the FMC the services of its corresponding inbound transfer
engine for one transfer. This signal is connected to the inbound arbi-
ter. In response to receiving this signal the FMC will de-assert its
RQST signal (see above). If the arbiter does not assert GRNT within a
specified amount of time, the FMC will abort the outstanding
request.

START Out This signal is asserted by the Arbiter whenever it requires the serv-
ices of its corresponding inbound transfer engine. This signal is con-
nected to the inbound Arbiter. It remains asserted until the GRNT
signal (see below) is asserted by the arbiter. Once granted (see
below), the FMC will not re-assert this signal until the transfer corre-
sponding to the request has completed. The signals on the Transac-
tion Interface (see xxx) become valid when RQST is asserted and
remain valid until the transfer is finished.

DONE In This signal is asserted for one clock by the Transfer Engine in
response to the FMC’s assertion of its RQST signal (see above). It
grants the FMC the services of its corresponding inbound transfer
engine for one transfer. This signal is connected to the inbound arbi-
ter. In response to receiving this signal the FMC will de-assert its
RQST signal (see above). If the arbiter does not assert GRNT within a
specified amount of time, the FMC will abort the outstanding
request.
page 52 Draft - for internal distribution only

Flash Memory Controller design specification
Chapter 5 The Arbiter Interface Version/Issue: 0.3/1
5.3 FMC Interface

The signals of this interface are connected to both the inbound arbiter and transfer engine. The
FMC uses this interface for each transaction which requires moving data to the FMC. See, for
example, the Set Page transaction described in Section 3.3 which writes code blocks to the
FMC’s flash memory. The FMC signifies its interest in using the transfer engine by asserting its
RQST signal. This signal is asserted once, and only once, for each transaction. The specification
of the transaction corresponding to the request is found in the Transaction Interface described
in xxx. In particular, the tenure of any one transaction on this interface is determined by the
values of the Move Word and Length fields of the command registered within the CMND port
(see Section 1.4.1).

5.4 Arbiter Timing

Relative timing is independent of whether or not the transfer is inbound or outbound. It is
however, dependent on the length and type of transfer. The length and type of the transfer are
determined by the values of the Move Word and Length fields of the command registered
within the CMND port (see Section 1.4.1).There are three cases to consider, each of which are
described below. Note that each example (for pedagogical reasons) shows the ERR flag
asserted. Of course, in reality, this flag will be asserted at most infrequently and hopefully not
at all.

Table 18 Signal definition for the Arbiter FMC interface.

Signal name I/O Description

RQST _n Out This signal is asserted by the FMC whenever it requires the services
of its corresponding inbound transfer engine. This signal is con-
nected to the inbound Arbiter (see Section 1.6). It remains asserted
until the GRNT signal (see below) is asserted by the arbiter. Once
granted (see below), the FMC will not re-assert this signal until the
transfer corresponding to the request has completed. The signals on
the Transaction Interface (see xxx) become valid when RQST is
asserted and remain valid until the transfer is finished.

GRNT_n In This signal is asserted for one clock by the inbound Arbiter (see
Section 1.6) in response to the FMC’s assertion of its RQST signal (see
above). It grants the FMC the services of its corresponding inbound
transfer engine for one transfer. This signal is connected to the
inbound arbiter. In response to receiving this signal the FMC will
de-assert its RQST signal (see above). If the arbiter does not assert
GRNT within a specified amount of time, the FMC will abort the out-
standing request.
Draft - for internal distribution only page 53

Flash Memory Controller design specification
Chapter 5 The Arbiter Interface Version/Issue: 0.3/1
5.4.1 Transfer one or more code blocks

Code block transfers are done by both the inbound and outbound interfaces. As an example,
see the Set Page transaction discussed in Section 3.3. The number of code blocks to transfer is
determined by the Length field of the transaction’s command. Each code block takes
thirty-three (33) clock cycles to transfer. The first 32 clocks provide the 128 data symbols for
the block and the last clock provides its four check symbols. An example, showing the transfer
of three code blocks, is illustrated in Figure 23:

Figure 23 Timing diagram of code block transfer

CLK

SOB

RQST

GRNT

DS32

ARG

DS1DOUT CS DS32DS1 CS DS32DS1 CS

CMND

block1 block2 block3

ERR
page 54 Draft - for internal distribution only

	Flash Core Set
	Abstract
	Hardware compatibility
	Intended audience
	Conventions used in this document
	References
	Document Control Sheet
	Document Status Sheet
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Principals of operation
	1.1 Introduction
	1.2 The Flash Devices used by the FMC
	1.2.1 Page data structure and data encoding
	1.2.2 Flash Attributes

	1.3 The FMC
	1.3.1 FMC Attributes
	1.3.2 FMC Resets

	1.4 Transactions
	1.4.1 Commands
	1.4.2 Addressing
	1.4.3 Units of data transfer

	1.5 Performance counters
	1.5.1 The Reads counter
	1.5.2 The Writes counter
	1.5.3 The Moves counter
	1.5.4 The Erasures counter
	1.5.5 The Device Errors counter
	1.5.6 The Arbitration time counter
	1.5.7 The Busy time counter
	1.5.8 The Arbitration timeouts counter
	1.5.9 The Command Congestion counter

	1.6 The Arbiter
	1.6.1 Arbiter Attributes
	1.6.2 Arbiter Resets

	1.7 Performance

	Chapter 2 The Initiator Interface
	2.1 Conventions
	2.2 Initiator Interface
	2.3 Timing

	Chapter 3 Initiator Commands
	3.1 Conventions
	3.2 Get Blocks
	3.2.1 Argument
	3.2.2 Performance counters incremented

	3.3 Set Page
	3.3.1 Argument
	3.3.2 Performance counters incremented

	3.4 Move Page
	3.4.1 Argument
	3.4.2 Performance counters incremented

	3.5 Erase Block
	3.5.1 Argument
	3.5.2 Performance counters incremented

	3.6 Get Flash Attributes
	3.6.1 Argument
	3.6.2 Performance counters incremented

	3.7 Get FMC Attributes
	3.7.1 Argument
	3.7.2 Performance counters incremented

	3.8 Get Counter
	3.8.1 Argument

	Chapter 4 The Transfer Interface
	4.1 Conventions
	4.2 Transaction Interface
	4.3 Inbound Interface
	4.4 Outbound Interface
	4.5 Transfer Timing
	4.5.1 Transfer one or more code blocks
	4.5.2 Transfer one word
	4.5.3 Zero-Length Transfers

	Chapter 5 The Arbiter Interface
	5.1 Conventions
	5.2 Transfer Engine Interface
	5.3 FMC Interface
	5.4 Arbiter Timing
	5.4.1 Transfer one or more code blocks

