

The PETACACHE experiment at SLAC
Cluster Element Module
An I/O System On Chip

Design proposal

Document Version: 0.4
Document Issue: 3
Document Edition: English
Document Status: Draft - for internal distribution only
Document ID: To be assigned
Document Date: April 5 , 2007

Stanford Linear Accelerator Center (SLAC)
2575 Sandhill Road

Menlo Park California, 94025 USA

Cluster Element Module Design proposal
April 5 , 2007 Version/Issue: 0.4/3
page 2 Draft - for internal distribution only

This document has been prepared using the Software Documentation Layout Templates that have been
prepared by the IPT Group (Information, Process and Technology), IT Division, CERN (The European
Laboratory for Particle Physics). For more information, go to http://framemaker.cern.ch/.

Cluster Element Module Design proposal
Abstract Version/Issue: 0.4/3
Abstract

To be written.

Hardware compatibility

This document assumes the following hardware revisions: TBD.

Intended audience

TBD

Conventions used in this document

Certain special typographical conventions are used in this document. They are documented
here for the convenience of the reader:

• Field names are shown in bold and italics (e.g., respond or parity).

• Acronyms are shown in small caps (e.g., SLAC or CDS).

• Hardware signal or register names are shown in Courier bold (e.g., RIGHT_FIRST or
LAYER_MASK_1)
Draft - for internal distribution only page 3

Cluster Element Module Design proposal
References Version/Issue: 0.4/3
References

1 Preliminary Product Specification of the Xilinx Virtex-4 Family Overview, dated
June 17, 2005

2 Data sheet for the Cisco SFS 7012P and 7024P Infiniband Server Switch

3 Data sheet for the SilverStorm 9024 (SDR/DDR) Infiniband Switch

4 Data sheet for the DataDirect Networks S2A9500 Infiniband Modular RAID Storage
Networking System

5 Product Data sheet for the Verari VS7000i, Native Infiniband Storage System

6 “Proposal for LSST R & D”, no date or revision given.

7 Infiniband Architecture Specification Volume 1, Release 1.2. Dated October 2004
(final release).

8 Optical Design Parameters, Proposed Camera Coordinate System, Proposed
Numbering Systems. Martin Nordby, Camera Team Meeting, 1 February 2006

9 Data sheet for the Micron 576Mb CIO Reduced Latency (RLDRAM II), part
number MT49H64M9, dated September, 2005.

10 Xilinix Virtex-4 Family Overview, Preliminary Product specification, dated
February 10, 2006

11 Strawman design for the Science Array DAQ Subsystem (SDS), dated February
23, 2006. Michael Huffer

Note: For additional resources, refer to xxx on the Camera Control System:

http://www-lsst.slac.stanford.edu/Elec_DAQ/Elec_DAQ_home.htm

Click Hardware and then click, List of all documents.
page 4 Draft - for internal distribution only

http://www-glast.slac.stanford.edu/Elec_DAQ/Elec_DAQ_home.htm

Cluster Element Module Design proposal
Document Control Sheet Version/Issue: 0.4/3
Document Control Sheet

Document Status Sheet

Table 1 Document Control Sheet

Document Title: Cluster Element Module Design proposal

Version: 0.4

Issue: 3

Edition: English

ID: To be assigned

Status: Draft - for internal distribution only

Created: February 9, 2002

Date: April 5 , 2007

Access: Z:\Private\pcp\CEM\v0.4\frontmatter.fm

Keywords: TBD

Tools DTP System: Adobe FrameMaker Version: 6.0

Layout
Template:

Software Documentation
Layout Templates

Version: V2.0 - 5 July 1999

Content
Template:

-- Version: --

Authorship Coordinator: Michael Huffer

Written by: Michael Huffer

Reviewed by: N/A

Approved by: N/A

Table 2 Document Status Sheet

Title: Cluster Element Module Design proposal

ID: To be assigned

Version Issue Date Reason for change

0.0 1 6/30/2006 Initial draft
Draft - for internal distribution only page 5

Cluster Element Module Design proposal
Document Status Sheet Version/Issue: 0.4/3
page 6 Draft - for internal distribution only

Cluster Element Module Design proposal
Table of Contents Version/Issue: 0.4/3

Table of Contents

Abstract . 3

Hardware compatibility . 3

Intended audience . . 3

Conventions used in this document . . 3

References . 4

Document Control Sheet . . 5

Document Status Sheet . 5

List of Figures . 13

List of Tables . 15

Chapter 1
Overview . 17

1.1 Introduction . 17
1.2 The Memory Subsystem . 17
1.3 DCR Bus Usage . 17

1.3.1 Bus Map . 17
1.3.2 Register Conventions . 18

Chapter 2
Configuration Memory . 21

2.1 Introduction . 21
2.2 Page organization and page buffer 22
2.3 Root block . 22
Draft - for internal distribution only page 7

Cluster Element Module Design proposal
Table of Contents Version/Issue: 0.4/3
2.4 File organization . 23
2.5 DCR Interface . 25

2.5.1 Transfer Control Register 26
2.5.2 Transfer Address Register 26
2.5.3 Transfer Data Register . 26

Chapter 3
Processor Bootstrapping . 29

3.1 Introduction . 29
3.2 Bootstrap Block . 29
3.3 DCR Interface . 30

3.3.1 Restart Options Register 30

Chapter 4
The Packet Interface Core (PIC) . 31

4.1 Introduction . 31
4.1.1 Packet model . 33
4.1.2 The Transfer Model and Transactions 34
4.1.3 Building blocks . 36

4.1.3.1 Transfer Blocks . 36
4.1.3.2 Interrupt Summary Block (ISB) 37

4.1.4 Connecting the blocks . 37
4.2 The Transaction Descriptor . 38
4.3 The Transaction Completion Descriptor (TCD) 40

4.3.0.1 Invalid payload length 42
4.3.0.2 Invalid header address 42
4.3.0.3 Invalid payload address 43
4.3.0.4 Data under-run . 43

4.4 Events, Conditions and the Transaction FIFO 43
4.4.1 FIFO parameters . 44

4.5 Events . 44
4.6 Faults . 45
4.7 The Pending Export Block . 46

4.7.1 Parameters . 47
4.7.2 The PEB’s Transaction FIFO 48
4.7.3 Faults triggered by a Protocol Core 49

4.7.3.1 Data Pipeline Empty 49
4.7.3.2 Status Pipeline Full 49

4.7.4 Faults triggered by a Protocol Driver 49
4.7.4.1 Invalid Transfer Descriptor 50
4.7.4.2 No such ECB . 50
4.7.4.3 Export FIFO Full . 50

4.8 The Export Complete Block . 50
page 8 Draft - for internal distribution only

Cluster Element Module Design proposal
Table of Contents Version/Issue: 0.4/3
4.8.1 Parameters . 52
4.8.2 The ECB’s Transaction FIFO 52
4.8.3 Faults triggered by a Protocol Core 53
4.8.4 Faults triggered by a Protocol Driver 53

4.9 The Free-List Block . 53
4.9.1 Parameters . 54
4.9.2 The FLB’s Transaction FIFO 55
4.9.3 Faults triggered by a Protocol Core 56
4.9.4 Faults triggered by a Protocol Driver 56

4.9.4.1 Invalid Transfer Descriptor 56
4.9.4.2 Freelist Full . 56

4.10 The Pending Import Block . 57
4.10.1 Parameters . 58
4.10.2 The PIB’s Transaction FIFO 58
4.10.3 Faults triggered by a Protocol Core 59

4.10.3.1 No such FLB . 60
4.10.3.2 Data Pipeline Full 60

4.10.4 Faults triggered by a Protocol Driver 60
4.11 The Interrupt Summary Block 60

4.11.1 Parameters . 61
4.12 The Export transaction . 61

4.12.1 Data structures for a successful export transaction 62
4.12.2 Data structures for a failed export transaction 63

4.13 The Import transaction . 64
4.13.1 Data structures for a successful import transaction 65
4.13.2 Data structures for a failed import transaction 67

4.14 The protocol engine message transaction 68
4.14.1 Data structures for a message transaction 69

Chapter 5
The PIC Front-End Interface . 71

5.1 Introduction . 71
5.1.1 Terminology . 71
5.1.2 Post-processing and completion status 71
5.1.3 What to do if a data or status pipeline is full? 72

5.2 Exporting . 72
5.2.1 Advancing the export pipeline 73
5.2.2 PEB Signal Descriptions 74

5.2.2.1 Export-Clock . 74
5.2.2.2 Export-Data Available 74
5.2.2.3 Export-Data Start 75
Draft - for internal distribution only page 9

Cluster Element Module Design proposal
Table of Contents Version/Issue: 0.4/3
5.2.2.4 Export-Advance Data Pipeline 75
5.2.2.5 Export-Data Last Line 75
5.2.2.6 Export-Data Last Valid Byte 75
5.2.2.7 Export-Data . 75
5.2.2.8 Export-Advance Status Pipeline 76
5.2.2.9 Export-Status . 76
5.2.2.10 Export-Status Full 76
5.2.2.11 Export-Core Reset 76

5.2.3 Transfer data structure 76
5.2.4 Timing examples . 77
5.2.5 Export Post-processing 79

5.3 Importing . 81
5.3.1 PIB Signal Descriptions 82

5.3.1.1 Import-Clock . 82
5.3.1.2 Import-Freelist . 82
5.3.1.3 Import-Advance Data Pipeline 82
5.3.1.4 Import-Data Last Line 83
5.3.1.5 Import-Data Last Valid Byte 83
5.3.1.6 Import-Data . 83
5.3.1.7 Import-Data Pipeline Full 83
5.3.1.8 Import-Core Reset 83

5.3.2 Transfer data structure 84
5.3.3 Timing examples . 85
5.3.4 Import Post-processing 86

Chapter 6 The PIC DCR Interface . 89

6.1 The PEB (Pending Export Block) 89
6.1.1 Control and Status Register (CSR) 89
6.1.2 Export Pending Register 91
6.1.3 Export Fault Register . 92

6.2 The ECB (Export Complete Block) 92
6.2.1 Control and Status Register (CSR) 93
6.2.2 Export Complete Register 94
6.2.3 Export Complete Fault Register 95

6.3 The FLB (Freelist Block) . 95
6.3.1 Control and Status Register (CSR) 96
6.3.2 Freelist Register . 97
6.3.3 Freelist Fault Register . 98

6.4 The (PIB) Pending Import Block 98
6.4.1 Control and Status Register (CSR) 99
6.4.2 Import Pending Register 101
6.4.3 Import Fault Register . 101
page 10 Draft - for internal distribution only

Cluster Element Module Design proposal
Table of Contents Version/Issue: 0.4/3
6.5 The ISB (Interrupt Summary Block) 101
6.5.1 Event Sources (Low) Register 102
6.5.2 Event Sources (High) Register 102
6.5.3 Fault Sources (Low) Register 103
6.5.4 Fault Sources (High) Register 103
Draft - for internal distribution only page 11

Cluster Element Module Design proposal
Table of Contents Version/Issue: 0.4/3
page 12 Draft - for internal distribution only

Cluster Element Module Design proposal
List of Figures Version/Issue: 0.4/3

List of Figures

Figure 1 p. 18 Data structures involved in a successful export transaction

Figure 2 p. 21 TBD.

Figure 3 p. 22 Entity relationships

Figure 4 p. 23 TBD

Figure 5 p. 24 TBD

Figure 6 p. 25 TBD

Figure 7 p. 26 Transfer Control register

Figure 8 p. 26 Transfer Address Register

Figure 9 p. 26 Transfer Data Register

Figure 10 p. 29 TBD.

Figure 11 p. 30 Restart options register

Figure 12 p. 32 CEM I/O model

Figure 13 p. 33 Entity relationships

Figure 14 p. 34 Packet model

Figure 15 p. 35 Packet transfer model

Figure 16 p. 37 Connecting the blocks

Figure 17 p. 38 Transfer Descriptor

Figure 18 p. 41 Transaction Completion Descriptor (TCD) and its EDW

Figure 19 p. 46 Block diagram of the PEB

Figure 20 p. 48 Structure of the TDE as used by the PEB

Figure 21 p. 51 Block diagram of the ECB

Figure 22 p. 52 Structure of the TDE as used by the ECB

Figure 23 p. 54 Block diagram of the FLB
Draft - for internal distribution only page 13

Cluster Element Module Design proposal
List of Figures Version/Issue: 0.4/3
Figure 24 p. 55 Structure of the TDE as used by the FLB

Figure 25 p. 57 Block diagram of the PIB

Figure 26 p. 59 Structure of the TDE as used by the PIB

Figure 27 p. 61 Block diagram of the ISB

Figure 28 p. 62 Typical lifetime of a Transfer Descriptor used to transmit a packet

Figure 29 p. 63 Data structures involved in a successful export transaction

Figure 30 p. 64 Data structures involved in an unsuccessful export transaction

Figure 31 p. 65 Typical lifetime of a Transfer Descriptor used to receive a packet

Figure 32 p. 66 Data structures involved in a successful import transaction

Figure 33 p. 68 Data structures involved in an unsuccessful import transaction

Figure 34 p. 69 Information exchange for a protocol engine message transaction

Figure 35 p. 70 Data structures involved in a protocol engine message transaction

Figure 36 p. 77 Transfer structure for the PEB.

Figure 37 p. 78 Timing diagram (one transfer) for the PEB

Figure 38 p. 79 Timing diagram for PEB three packet transfer

Figure 39 p. 84 Transfer structure for the PEB.

Figure 40 p. 85 Timing diagram (one transfer) for the PIB

Figure 41 p. 86 Timing diagram for PIB three packet transfer

Figure 42 p. 90 PEB CSR register

Figure 43 p. 92 Export Pending Register

Figure 44 p. 92 Export Fault Register

Figure 45 p. 93 ECB CSR register

Figure 46 p. 94 Export Complete Register

Figure 47 p. 95 Export Complete Fault Register

Figure 48 p. 96 FLB CSR register

Figure 49 p. 98 Freelist Register

Figure 50 p. 98 Freelist Fault Register

Figure 51 p. 99 PIB CSR register

Figure 52 p. 101 Import Pending Register

Figure 53 p. 101 Import Fault Register

Figure 54 p. 102 ISB event register (Low)

Figure 55 p. 103 ISB event register (High)

Figure 56 p. 103 ISB fault register (Low)

Figure 57 p. 104 ISB fault register (High)
page 14 Draft - for internal distribution only

Cluster Element Module Design proposal
List of Tables Version/Issue: 0.4/3

List of Tables

Table 1 p. 5 Document Control Sheet

Table 2 p. 5 Document Status Sheet

Table 3 p. 25 Register offsets for the PEB

Table 4 p. 30 Register offsets for the PEB

Table 5 p. 42 Reason and Parameter values for errors defined by the PIC

Table 6 p. 74 Signal definitions for the PEB

Table 7 p. 82 Signal definitions for the PIB

Table 8 p. 89 Register offsets for the PEB

Table 9 p. 92 Register offsets for the ECB

Table 10 p. 95 Register offsets for the FLB

Table 11 p. 98 Register offsets for the PIB

Table 12 p. 102 Register offsets for the ISB
Draft - for internal distribution only page 15

Cluster Element Module Design proposal
List of Tables Version/Issue: 0.4/3
page 16 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 1 Overview Version/Issue: 0.4/3
Chapter 1
Overview

1.1 Introduction

TBD

1.2 The Memory Subsystem

TBD

1.3 DCR Bus Usage

TBD

1.3.1 Bus Map

All these relationships are illustrated in Figure 1:
Draft - for internal distribution only page 17

Cluster Element Module Design proposal
Chapter 1 Overview Version/Issue: 0.4/3
1.3.2 Register Conventions

The application interface to the CE consists of registers on the processor’s DCR bus (see xxx).
Registers on this bus are all thirty-two (decimal) bits wide. These registers are further broken
down into fields, where a field is specified as a bit offset and length (in number of bits). Any

Figure 1 Data structures involved in a successful export transaction

ECBN

032

64
page 18 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 1 Overview Version/Issue: 0.4/3
field used as a boolean has a width of one bit. A value of one (1) is used to indicate its set or
true sense and a value of zero (0) to indicate its clear or false sense. Field numbering (bit offsets)
for registers are such that zero (0) corresponds to a register’s Least Significant Bit (LSB) and
thirty-one (31) corresponds to a register’s Most Significant Bit (MSB). Bit offsets are always
specified in decimal, unless otherwise noted. There are four types of generic fields:

Not defined: Undefined fields are identified as Must Be Zero (MBZ) and are illustrated greyed
out. MBZ fields will:

— read back as zero

— ignore writes

— reset to zero

Read/Write: Read/Write fields will, on Reset, be set to zero.

Selective Set and Clear (SSC): SSC fields are used where it is necessary to change one or more
fields of a register and leave the remaining fields unchanged1. These fields will
have a complementing Enable field. This field will have the same width as its
corresponding SSC field. The Enable field for any arbitrary SSC field is found by
shifting that field’s bit offset by 16 (decimal). Enable fields are illustrated lightly
greyed-out. These fields satisfy the following conventions:

— may only be set, clearing the field is ignored

— read back as zero

SSC fields will:

— ignore writes, unless their corresponding field enables are also asserted

— reset to zero, unless otherwise documented

Read-Only: Read-only fields are illustrated lightly greyed-out with their value. Read-Only
fields will:

— ignore writes

— reset to zero, unless otherwise documented

Registers on the DCR bus are read using the mfdcr instruction and written using the mtdcr
instruction. The literal offset of these instructions corresponds to the register’s bus address.

1. Sometimes referred to as indivisible read/modify/write.
Draft - for internal distribution only page 19

Cluster Element Module Design proposal
Chapter 1 Overview Version/Issue: 0.4/3
page 20 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 2 Configuration Memory Version/Issue: 0.4/3
Chapter 2
Configuration Memory

2.1 Introduction

TBD. This model is illustrated in Figure 2:

Figure 2 TBD.

page
buffer

Engine flash device

DCR bus

Flash TransferTransfer
Address
Register

Transfer
Data

Register

Transfer
Control
Register
Draft - for internal distribution only page 21

Cluster Element Module Design proposal
Chapter 2 Configuration Memory Version/Issue: 0.4/3
2.2 Page organization and page buffer

TBD.

xxx are shown in Figure 3:

2.3 Root block

TBD. xxx are shown in Figure 4:

Figure 3 Entity relationships

0

R-S check symbols R-S check symbols

R-S check symbols R-S check symbols

Strip0

Strip1

Strip2

Strip3

unused

File Link

128

384

512

512

516

520

524

528

132

512

unmapped

one flash page

page buffer
page 22 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 2 Configuration Memory Version/Issue: 0.4/3
.

2.4 File organization

TBD. This model is illustrated in Figure 5:

Figure 4 TBD

0

30

0
boot option

flags

file

load address

transfer address

14

15

option number

bad block

1

2

31

vector

list

block0

page number

root block
boot option vector

allocated block
list

file handle
vector
Draft - for internal distribution only page 23

Cluster Element Module Design proposal
Chapter 2 Configuration Memory Version/Issue: 0.4/3
TBD. This model is illustrated in Figure 6:

Figure 5 TBD

file handle vector

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1021

1020

1022

1023

032 16

File Link

Page range
Block address

01116

File Length

file handle
page 24 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 2 Configuration Memory Version/Issue: 0.4/3
2.5 DCR Interface

The Back-End interface to the XXX consists principally of three registers. The location of these
registers on the DCR bus relative to one another is enumerated in Table 3. The absolute
location of these registers is specified as a block instantiation parameter.

Figure 6 TBD

file vector

block192 block1234 block999

192,31

1234,31 999,03

0.0

0

1 0

1

2

3

30

31

2

3

4

5

6

7

8

9

10

11

12

13

61

60

62

63

0

1

2

3

30

31

file number

page number

Table 3 Register offsets for the PEB

Offset1 Name Description

0 TCR Transfer Control Register. See Section 2.5.1

4 TAR Transfer address FIFO. See Section 2.5.2

8 TDR Transfer Data REgister. Contains either the data read or the data to be
written. See Section 2.5.3
Draft - for internal distribution only page 25

Cluster Element Module Design proposal
Chapter 2 Configuration Memory Version/Issue: 0.4/3
2.5.1 Transfer Control Register

TBD. The structure of this register is illustrated in Figure 7:

Where:

XXX: TBD. Note: this is a Selective Set and Clear field (see Section 2.5). In order to reset
the block the appropriate field enable must also be set (see below).

2.5.2 Transfer Address Register

TBD. The structure of this register is illustrated in Figure 8:

2.5.3 Transfer Data Register

TBD. The structure of this register is illustrated in Figure 9:

1. In bytes

Figure 7 Transfer Control register

0332 1516

Busy
Opcode
Error

1

MBZ

Page address

Figure 8 Transfer Address Register

032

Address

9

MBZ

Figure 9 Transfer Data Register

032

Data read or written
page 26 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 2 Configuration Memory Version/Issue: 0.4/3
Draft - for internal distribution only page 27

Cluster Element Module Design proposal
Chapter 2 Configuration Memory Version/Issue: 0.4/3
page 28 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 3 Processor Bootstrapping Version/Issue: 0.4/3
Chapter 3
Processor Bootstrapping

3.1 Introduction

TBD. This model is illustrated in Figure 10:

TBD. This model is illustrated in Figure 10

3.2 Bootstrap Block

TBD.

Figure 10 TBD.

DCR bus

Restart

reset

restart options

PPC
reset
block Register
Draft - for internal distribution only page 29

Cluster Element Module Design proposal
Chapter 3 Processor Bootstrapping Version/Issue: 0.4/3
3.3 DCR Interface

The Back-End interface to the XXX consists of a single register. The location of this register on
the DCR bus relative to one another is enumerated in Table 4. The absolute location of these
registers is specified as a block instantiation parameter.

3.3.1 Restart Options Register

TBD. The structure of this register is illustrated in Figure 11:

Where:

XXX: TBD. Note: this is a Selective Set and Clear field (see Section 1.3.2). In order to
reset the block the appropriate field enable must also be set (see below).

Table 4 Register offsets for the PEB

Offset1

1. In bytes

Name Description

0 RESTART Restart options. See xxx

Figure 11 Restart options register

0432 16

Restart options
External options

MBZMBZ

20

R/O
page 30 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
Chapter 4
The Packet Interface Core (PIC)

4.1 Introduction

The CEM’s I/O model allows external data transfers to move directly (with no processor
intervention) from outside world to and from processor memory. Data is transferred from one
or more protocol specific networks. The number and types of networks that are accessible to
the CE are only constrained by the amount of resources available on the CE. While the detailed
structure of data within each network is protocol specific, the model assumes data is always
transferred between network and CE in units of Packets, as illustrated in Figure 12:

The Packet Interface Core (PIC) is a set of five different types of IP blocks designed to facility
protocol implementation by providing a common interface, independent of protocol to
efficiently transfer packets between networks and processor memory. The implementor
interacts with these blocks through a series of Interfaces. The model assumes the sum of the
intellectual effort to implement a specific protocol stack is partitioned into two domains:

The Protocol Core: The set of hardware (VHDL) instructions which interact with the PIC. The
protocol core uses the PIC’s Front-End interfaces. The specification for these
interfaces is given in Chapter 5. Typically, the protocol engine is comprised of a
protocol core, elements of the PIC’s Front-End Interface, and the logic to glue these
components all together.

The Protocol Driver: The set of software (processor) instructions which interact with the PIC.
The protocol core uses the PIC’s Back-End interfaces. The specification for these
interfaces is given in Chapter 6.

The relationship between a core, its corresponding driver and the PIC is illustrated in
Figure 12:
Draft - for internal distribution only page 31

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
As a CE is realized using FPGAs from the Virtex-4 family (see [1]), it is assumed that a protocol
core’s physical layers will most likely (but, not necessarily) depend on the
Multi-Gigibit-Transceivers (MGTs) provided by the FPGA. The dependencies between MGTs,
potential protocol cores and drivers and the PIC are illustrated in Figure 14:

Figure 12 CEM I/O model

memory

processor

NetworkbNetworka

Cluster Element

PIC
Protocol
 Core

Protocol
 Driver

Front-End Interface

Back-End Interface
page 32 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
4.1.1 Packet model

While the detailed structure of a packet is clearly protocol dependent, packets are assumed to
share some common characteristics independent of protocol. In particular, all packets can be
decomposed into three different components:

Header: The information necessary to describe and manage the packet content (see the
Payload component below). For example, source and destination address,
sequence numbers, QOS identifiers, etc... The Header always constitutes the first
bytes of a packet either sent or received. The Header is always an integral number
of bytes. For any given protocol the length of the Header is arbitrary, but fixed.
This parameter is called the Maximum Header Length or MHL.

Figure 13 Entity relationships

Xilinx MGT support

PCI Express InfiniBandethernet camera protocol
10/100/1000 LSST XAUI (10 Gbit)

ethernet

Front-End-Interface

PCI Express InfiniBand
ethernet camera protocol

10/100/1000 LSST XAUI (10 Gbit)
ethernet

Back-End-Interface

application/support code

protocol drivers

protocol cores

Packet Interface Core (PIC)
Draft - for internal distribution only page 33

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
Payload: The transferred information or content. The Payload immediately follows the
Header. The Payload is always an integral number of bytes. Unlike Header
length, Payload length is variable. For any given protocol the payload length can
vary as a function of packet. However, to facility memory management, for any
one protocol, packets must have a maximum length. This parameter is called the
Maximum Payload Length, or MPL.

Trailer: Packet integrity identifiers, for example, packet CRCs. The Trailer immediately
follows the Payload and is an indeterminate number of bits. The model assumes
the construction and use of the Trailer is outside its scope. (need some
explanation here).

One of the responsibilities of the PIC is to enforce length constraints on both header and
payload. This topic is discussed in 4.3. The abstract structure of a packet and its relationship
with these constraints is illustrated within Figure 14:

4.1.2 The Transfer Model and Transactions

The PIC transfers packets in one of two directions. Any one transfer, in any one direction, is
called a Transaction. Therefore:

— An Export transaction transfers a single packet from processor memory to network.
The Export Pending and Export Complete blocks are the two principal PIC blocks used
for an export transaction. These blocks are introduced in Section 4.1.3.1.

— An Import transaction transfers a single packet to processor memory from network.
The Import Pending and FreeList blocks are the two principal PIC blocks used for an
import transaction. These blocks are introduced in Section 4.1.3.1.

To the protocol core the PIC represents a packet as a single contiguous stream of data, while to
the protocol driver, the PIC represents the packet as two separate components located in
processor memory, one for header and one for payload. These components can to be located
either contiguous with respect to one another or separately, at arbitrary locations within
processor memory.

Figure 14 Packet model

Packet

Payload Header
transmission direction

MPL MHL

Trailer
page 34 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
For an export transaction the export blocks will gather both header and payload from
memory and transfer there contents to the protocol core for transmission as a single packet.
For an import transaction, the protocol core hand a packet to the import blocks where its
contents will be scattered to two individual locations in memory, one for the header and one
for its payload. The relationship between a packet as seen by the protocol core and its
representation in memory is illustrated in Figure 15:

Note that header and payload and are no longer necessarily contiguous with respect to one
another in memory. The specification of where to either scatter or gather the components of a
packet are specified in a data structure called the Transaction Descriptor. This is the central
structure around which much of the dynamics of packet transfer revolve and is discussed
below, in Section 4.2.

Figure 15 Packet transfer model

Packet

Payload

HeaderPayload Transaction Descriptor

Processor Memory

MHLHeader
Draft - for internal distribution only page 35

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
4.1.3 Building blocks

From the user’s perspective, the PIC consists of five different types of building blocks. Four of
these blocks are used in packet transfers, one pair (the PEB and ECB) for export transactions
and one pair (FLB and PEB) for import transactions. The fifth block (the ISB) is used to couple
actions in the transfer blocks with interrupts in the processor. The export blocks communicate
internally with each other through their export cross-point, while the import blocks
communicate with each other through their import cross-point. Note; that both cross-points
are actually hidden from the implementor and only come into existence when a system is
instantiated (see xxx).

4.1.3.1 Transfer Blocks

Pending Export Block (PEB): Used to initiate export transactions. The block’s Back-End
Interface is used by a protocol driver to post export requests. This request is called
a Transaction Descriptor (see Section 4.2). The block’s Front-End Interface allows
the protocol core to respond to those requests. When the protocol core is ready,
the PEB gathers the packet’s components and DMAs the assembled packet to the
protocol core who transmits the packet. Once transmission is finished, the
protocol core signals completion status to this block, which switches this
information, through the export cross-point, to the appropriate ECB (see below).
The PEB is discussed in additional detail within Section 4.7.

Export Complete Block (ECB): Used to complete export transactions. The block’s Front-End
Interface is not directly accessible to the implementor, instead, this interface is
connected to the export cross-point where it waits for completion messages from
one or more PEBs (see above). These potential messages are re-formatted and
DMA’d to memory as Transaction Completion Descriptors (see Section 4.3). The
block’s Back-End Interface allows the protocol driver to wait on completed export
transactions. The ECB is discussed in additional detail within Section 4.8.

Free-List Block (FLB): This block is used implicitly by a protocol core to allocate buffer space
in memory for packets which are pending reception. Each buffer on the freelist
describes one Transaction Descriptor. The block’s Front-End Interface is not
directly accessible to the implementor, instead, this interface is connected to the
import cross-point where it waits for buffer requests from one or more PIBs (see
below). The block’s Back-End Interface is used by the protocol driver to replenish
the freelist with the memory needed by the protocol core to buffer incoming
packets. The FLB is discussed in additional detail within Section 4.8.3.

Pending Import Block (PIB): The block’s Front-End Interface is used by a protocol core to post
completed import transactions. In order to determine where to locate the received
packet, the interface uses a Transfer Descriptor allocated from a FLB (see above)
and obtained through the import cross-point. The protocol driver uses the block’s
Back-End Interface to wait on completed import transactions. The PIB is discussed
in additional detail within Section 4.10.

For each CE the total number of transfer style blocks which may be instantiated1 is sixty-four
(64).
page 36 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
4.1.3.2 Interrupt Summary Block (ISB)

The Interrupt Summary Block (ISB) aggregates the Event and Fault signals from any one of
the four different types of transfers blocks. The ISB is discussed in additional detail within
Section 4.11. For each CE there will be one, and only one ISB instantiated.

4.1.4 Connecting the blocks

The number and types of blocks instantiated are specified at system build time. Each of the
four transfer blocks are configurable and their exact configuration is also established at build
time. Both number and type of block in any given system are driven by the specific protocol
requirements. For example, if the protocol demands QOS (Quality-Of Service), it might require
multiple pairs of blocks for different service levels or virtual channels. However, in the most
trivial (and perhaps most common) case, a specific protocol would require only four blocks: A
single PEB/ECB pair for packet transmission and one FLB/PEB pair for packet reception. This
particular configuration is also sufficient to illustrate (see Figure 17) the connectivity
established between the blocks by the PIC when a system is instantiated:

1. Assuming the FPGA has sufficient resources

Figure 16 Connecting the blocks

FLBECB PIBPEB

ISB

Protocol Core

Processor

DCR bus

interrupts

export cross-point import cross-point
Draft - for internal distribution only page 37

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
Therefore, to instantiate any one system, the PIC will:

— Instantiate both export and import cross-points.

— Instantiate an ISB.

— Instantiate all specified blocks using their corresponding parameters.

— Connect all the blocks Front-End interfaces to the DCR bus.

— Connect all the blocks Fault and Event signals to the ISB.

— Connect the ISB to the processor interrupt controller.

— Connect the ISB connected to DCR bus.

— Connect all ECBs and PEBs to the export cross-point.

— Connect all FLBs and PIBs to the import cross-point.

4.2 The Transaction Descriptor

The Transaction Descriptor is a 16-byte data structure which resides in physical memory and
specifies all the information necessary to perform a single transaction. In the case of
transmission the protocol driver posts this description to the PIC. In the case of reception, the
order is reversed and the PIC posts this description to the protocol driver. The structure of a
Transfer Descriptor is illustrated in Figure 17:

In actuality what is posted is not the descriptor, but instead its address. This address is called a
Transaction Descriptor Reference or TDR. By convention all descriptors must be 64-byte aligned,
therefore the value of the low-order six bits of the address are redundant and a TDR can be
(and is) represented in twenty-six bits. This allows the TDR to be encapsulated within a 32-bit
word, while at the same time as reserving six of the word’s bits for additional functionality.
This word is called Transaction Descriptor Entry, or TDE. The relationship between
Transaction Descriptor, TDR and TDE is illustrated within Figure 17. TDEs are the entities
which are actually inserted, buffered and removed by the five different types of PIC blocks
(see Section 4.4). The low-order six-bits of the TDE are overloaded and each block interprets
these bits in a block specific fashion. For example, see the definition of the TDE used by the PIB

Figure 17 Transfer Descriptor

032

Packet Header

Payload length

Packet Payload

TCD

032Transaction Descriptor 6

D/CTDR

Transaction Descriptor Entry (TDE)
page 38 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
as described in Section 4.7.2. and illustrated within Figure 20. Returning to the Transaction
Descriptor its fields are defined as follows:

Payload length: The size of the packet payload expressed in bytes. In a descriptor used to
export a packet the value of this field specifies the size of the payload of the packet
to be transferred from memory to network. There are two constraints on the value
of this field:

— It must be less then or equal to the MPL (see Section 4.1.1).

— It must not be zero,(0), unless the IsContiguous field of the corresponding
TDE (see Section 4.8.2) is true.

If either of these two constraints are violated the corresponding transaction will
abort with the EDW Reason code: INVALID_PAYLOAD_LENGTH (see Table 5).

In a descriptor used to import a packet, the value of this field sets the threshold for
the maximum number of bytes which can be received for the corresponding
packet. The value of this field must never exceed the MPL (see Section 4.1.1). If
either this constraint is violated or the received packets exceeds the value of this
field the corresponding transaction will abort with the EDW Reason code:
INVALID_PAYLOAD_LENGTH (see Table 5).

Packet Header: The base address of the packet header expressed in units of bytes with a value
of zero corresponding to the first location in memory. This address must be 32-byte
aligned. In a descriptor used to export a packet (see Section 4.12), the value of this
field specifies the address of the packet header to be transferred from memory to
network. In a descriptor used to import a packet (see Section 4.13) this field
specifies the address of the buffer which is to contain the packet header
transferred from network to memory. When used in a transaction, if the address is
invalid the corresponding transaction will abort with the EDW Reason code:
INVALID_HEADER_ADDRESS (see Table 5). A header address is invalid if it is
either not 32-byte aligned (low-order five bits of the field are not zero), or any
locations within the corresponding header are outside the physical address range
of the CE.

Packet Payload: The base address of the packet payload expressed in units of bytes with a
value of zero corresponding to the first location in memory. This address must be
32-byte aligned. In a descriptor used to export a packet (see Section 4.12), the
value of this field specifies the address of the payload of the packet to be
transferred from memory to network. In a descriptor used to import a packet (see
Section 4.13) this field specifies the address of the buffer which is to contain the
packet payload transferred from network to memory. The address is checked for
validity in all cases, except an export transaction in which the IsContiguous field
of the corresponding TDE (see Section 4.8.2) is true. In all other cases, if the
address is invalid the corresponding transaction will abort with the EDW Reason
code: INVALID_PAYLOAD_ADDRESS (see Table 5). A payload address is invalid if
it is either not 32-byte aligned (low-order five bits of the field are not zero), or any
locations within the corresponding payload are outside the physical address
range of the CE.
Draft - for internal distribution only page 39

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
TCD: The address of an Transaction Completion Descriptor (TCD) expressed in units of
bytes with a value of zero corresponding to the first location in memory. This
address must be 32-byte aligned.The structure and usage of the TCD are discussed
in Section 4.3. When used in a transaction, if this address is invalid a fault will be
declared (see Section 4.6). A TCD address is invalid if it is either not 32-byte
aligned (low-order five bits of the field are not zero), or the location is outside the
physical address range of the CE.

4.3 The Transaction Completion Descriptor (TCD)

Transactions can either succeed or fail. Their completion status is defined by a combination of
the PIC and the appropriate protocol core and read and used by the protocol driver. And while
all successes are the same, all failures are different, occurring at different points in a
transaction and for different reasons. For example, the contents of the Transfer Descriptor
could be invalid, or a packet received by a protocol driver could contain a CRC error. All this
transaction completion information is encapsulated in a 32-byte structure, residing in physical
memory called the Transaction Completion Descriptor, or TCD. The address of the TCD for any
particular transaction is contained in a Transaction Descriptor described above (see Section 4.2).
It is the responsibility of the protocol core and the PIC, working in concert, to deliver for each
transaction a well-formed TCD. For the PIC, this is an explicit operation and for the protocol
core this is an implicit operation. Implicit, because the protocol core is not exposed directly to
the TCD. Instead it contributes completion status indirectly through a PIC block’s Front-End
interface. For example, when the protocol core finishes packet transmission, it passes its
completion status by writing to the PEB’s Status port (see Section 5.2.2.9). The structure of
the TCD and its EDW is illustrated in Figure 18. The first word of the TCD is called the Error
Description Word, or EDW, the second word is the actual transfer count and the remaining
words are reserved and must be zero. The structure of the first word is called out separately, as
the completion status value written by the protocol core is actually an EDW (see Section 5.2.5).
page 40 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
where:

WasError: This field determines the interpretation of the values of the higher-order fields. If
this field is true (set) the values of the remaining fields are interpreted as specified
below. If this field is false (clear), the value of the remaining fields are unspecified.

Error Reason: A six-bit value which enumerates the reason the reported transaction failed.
Reason values are protocol dependent, however, if the WasBlock field is set (see
below), the origin of the error was the PIC itself. In such a case, the potential
values for this field are enumerated in Table 5.

WasBlock: This field determines whether the error originated within the PIC (i., e., in one or
more of the four interface blocks described below). In such a case, this field is true
(set) and both the Error Reason and Error Parameter fields are specified in
Table 5. If this field is false (clear), the value of both the Error Reason and Error
Parameter fields are protocol dependent.

Error Parameter: A twenty-four-bit value which parameterizes the Error Reason field (see
above). Parameter values are protocol dependent, however, if the WasBlock field
is set (see above), the origin of the error was in the PIC itself. In such a case, the
potential values for this field are enumerated in Table 5.

Transferred: This field contains the number of bytes of the packet successfully transmitted or
received.

Note: While an import transaction always writes the TCD on completion, on an export
transaction the PIC only references and writes the TCD for a transaction when it fails. By not
writing this structure when the transaction completes successfully (hopefully, the
predominate case), the PIC saves both a cache-line fetch and write, thus contributing to
improving the overall system throughput. Therefore, on any successful export transaction its

Figure 18 Transaction Completion Descriptor (TCD) and its EDW

0732

WasError
Error Reason

8

WasBlock
Error Parameter

1

MBZ

MBZ

MBZ

MBZ

MBZ

MBZ

Transferred

EDW
Draft - for internal distribution only page 41

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
TCD will retain the values it had at the time its corresponding Transaction Descriptor was
posted. It is considered good practice for the protocol driver to ensure the wasError field of
the EDW is false (clear), before the corresponding descriptor is posted.

A TCD is composed by the PIC under two circumstances:

— Whenever either a PEB or FLB discovers inconsistency within a Transfer Descriptor.

— The protocol core generates an error in processing the request.

Its important to realize that in the first case the transaction takes an early exit and the request
never reaches the protocol core.

4.3.0.1 Invalid payload length

The value specified in the Payload Length field of the corresponding Transaction Descriptor
was greater then MPL (see Section 4.1.1). In such a case the value of the Parameter field will be
zero (0). Note: If more then one of the first three fields in the descriptor is invalid, this error
will take precedence over the other two.

4.3.0.2 Invalid header address

The value specified in the Packet Header field of the corresponding Transaction Descriptor is
invalid for one or more of the following reasons:

— Its most significant bits do not match the RLDRAM base address.

— Its not cache (32-byte) aligned.

— Its relative offset within the RLDRAM is such that the data contained in the header will
run past the end-of-memory.

In such a case the value of the Parameter field will be zero (0). Note: If the payload address is
also invalid, this error will take precedence.

Table 5 Reason and Parameter values for errors defined by the PIC

Reason

 Parameter descriptionName Value1

1. In decimal.

INVALID_PAYLOAD_LENGTH 01 None (Must be Zero). Section 4.3.0.1

INVALID_HEADER_ADDRESS 02 None (Must be Zero). Section 4.3.0.2

INVALID_PAYLOAD_ADDRESS 03 None (Must be Zero). Section 4.3.0.3

DATA_OVER_RUN 62 None (Must be Zero). Section 4.3.0.4

DATA_UNDER_RUN 63 None (Must be Zero). Section 4.3.0.4
page 42 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
4.3.0.3 Invalid payload address

The value specified in the Packet Payload field of the corresponding Transaction Descriptor is
invalid for one or more of the following reasons:

— Its most significant bits do not match the RLDRAM base address.

— Its not cache (32-byte) aligned.

— Its relative offset within the RLDRAM is such that the data contained in the header will
run past the end-of-memory.

In such a case the value of the Parameter field will be zero (0).

4.3.0.4 Data under-run

The protocol core was attempting to export a packet, however the PEB’s Front-End interface
could not keep up with the rate at which the protocol core would wish to transmit the packet.
See Section 5.2.5 for a more detailed discussion of this error. In such a case the value of the
Parameter field will be zero (0).

4.4 Events, Conditions and the Transaction FIFO

Each one of the four different types of transfer blocks contains a Transaction FIFO (see, for
example, the ECB described in Section 4.8). The transaction FIFO buffers transaction oriented
requests between the protocol core and its corresponding protocol driver. For any one block,
one port of the FIFO appears on the block’s Front-End interface, while the other port is on its
Back-End Interface. These are asynchronous FIFO’s with the capacity to store up to 512 x 36 bit
entries1. The abstract function of a transaction FIFO is two-fold:

— Decouple the processor’s clock domain (the Back-End) from the clock domain
required to operate any arbitrary protocol core (the Front-End).

— Decouple the rate a protocol core can post/retire transactions from the rate at which
its corresponding protocol driver can post/retire transactions.

When in use, a FIFO can be in one of four states:

— Not-Empty

— Almost-Empty

— Almost-Full

— Full

1. With the intent of allowing FIFO implementation to map directly to the FPGA’s block memory.
Draft - for internal distribution only page 43

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
While the definition of Almost-Empty and Full are block invariant, the thresholds for the
Almost-Full and Almost-Empty states may be specified on a per block basis. See Section 4.4.1
below for more information. When in use, a FIFO‘s current state is called its condition. The
FIFO’s condition can be monitored by the protocol driver through a field within a block’s CSR
register (see for example, the PEB’s CSR register described in Section 6.1.1). In addition, some
FIFO conditions are presented to the driver implicitly. For example, the PIB returns a sentinel
value when its Transaction FIFO is read while Empty (see Section 6.4.2). However, the most
important use of a FIFO’s condition is to drive a block’s Event signal. This signal is discussed
in Section 4.5.

4.4.1 FIFO parameters

When a block is instantiated the user may specify the thresholds for two conditions of a
block’s transaction FIFO as follows:

Almost-Empty: The threshold for asserting the Almost-Empty condition. The condition is
asserted while the number of TDEs in the corresponding FIFO is less than or equal
to the value of this parameter. The parameter is expressed in number of TDEs. The
valid parameter values are between zero (0) and 510 (decimal) inclusive.

Almost-Full: The threshold for asserting the Almost-Full condition. This condition is asserted
while the number of TDEs in the corresponding FIFO is greater than or equal to the
value of this parameter. The valid parameter values are between one (1) and 511
(decimal) inclusive.

4.5 Events

Each block defines an Event signal. When the block is instantiated, this signal is connected to
the ISB (see Section 4.11). The ISB maps this signal to the processor’s non-critical interrupt
signal. Thus, whenever the block asserts its Event signal, a non-critical interrupt is triggered
in the processor. This signal is formed by using, as input, the current condition of the block’s
Transaction FIFO (see Section 4.4) as well as the values of the Event Triggers and Event Enable
fields found in the block’s CSR register (see for example Section 6.1.1). Using these inputs the
logic to form this signal is as follows:

— mask the current condition against the value of the Event Triggers field

— ORs the result

— mask this result against the Event Enable field

— if the result is true, the Event signal is asserted

The Event signal remains asserted until the condition which caused its assertion is removed.
For example, if the Not-Empty condition of the transaction FIFO is used to trigger an event,
then the Event signal will be deasserted only while the FIFO is empty.
page 44 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
Events are intended to represent state transitions of a protocol engine which, in the normal
course of operation, are expected to occur and are expected to be used by protocol core and
driver to communicate changes in their relative states. For example, a protocol driver will
need to “wait” for received packets. These packets will be delivered by the corresponding
protocol core through its PIB (see Section 4.10). When the core has received a packet the PIB’s
transaction FIFO will be Not-Empty. Consequently, the protocol driver could use the Not-Empty
event as an indication of packet arrival and could wait on its corresponding interrupt.

4.6 Faults

Each block contains one Fault signal. When the block is instantiated, this signal is connected
to the ISB (see Section 4.11). The ISB maps this signal to the processor’s critical interrupt signal.
Thus, whenever a block asserts its Fault signal, a critical interrupt will be triggered in the
processor.

Blocks may generate a fault through actions initiated by either the protocol driver, protocol
core, or both. The description of each block enumerates the potential faults generated by that
block, broken down by whether the fault originated through an action of the core or the
driver. See for example, Section 4.7.3 and Section 4.7.4 which enumerate the potential faults
generated by the PEB.

When the block determines from its inputs that a fault should be generated the following
actions are taken by the block:

— The action (from either protocol core or driver) triggering the fault is rejected.

— If a fault is currently pending, no further action is taken.

— If a fault is not pending:

— The Fault Pending field of the block’s CSR is set.

— The offending TDE is written to the block’s TDE Fault register.

Unlike an event a fault persists (the signal remains asserted) even after the conditions which
precipitated the fault are removed. Only the protocol driver can clear a pending fault. To clear
a pending fault (deassert the signal) requires one of the following two actions:

— Clear the Fault pending field of the block’s CSR (see, for example Section 6.1.3).

— Reset the block through its csr register.
Draft - for internal distribution only page 45

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
For a description of these registers see Chapter 6. Note: Unlike an Event (see Section 4.5), a
fault is not user maskable.

Note: Faults should be considered, in the normal course of operation, to never occur and their presence
should be considered a logic or design error. Basically, they identify a non-recoverable error.

4.7 The Pending Export Block

The Pending Export Block (PEB) is used to initiate a packet transfer from memory to network
(an export transaction). A protocol driver initiates a transaction by queuing a TDE to the block’s
transaction FIFO through the block’s Back-End Interface. When the PEB dequeues that request,
it signals through its Front-End Interface, the corresponding protocol core. This core then
requests (through this interface) the data corresponding to the transfer, packetizes these data
and transmits the resulting packet onto the appropriate network.

Typically (depending on transaction parameterization), once the packet has been transmitted,
the PIC locates and uses a ECB (see Section 4.8) to signal back to the protocol driver that the
transaction is finished.

A more detailed discussion of the export transaction is found in Section 4.12. A block diagram
of this interface is illustrated in Figure 19:

The PEB’s Front-End Interface is intended to interface with a protocol specific core. That is, a
core’s Back-End transmit interface “plugs” into the block’s Front-End interface.

The block’s Back-End Interface consists principally of an interface to the PEB‘s transaction
FIFO. This FIFO buffers protocol driver originated TDEs. The description for the TDE associated
with the PEB is found in Section 4.7.2. The FIFO’s write port is connected to the processor’s DCR

Figure 19 Block diagram of the PEB

Pending Export Block

to ISB

Event

to protocol core

DCR bus

Back-End interfaceFront-End interface

Fault

to export cross-point

FIFO

CSR

to protocol driver

Fault
page 46 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
bus. A protocol driver writes to this port in order to queue transactions. The PEB controls
access to the FIFO’s corresponding read port and uses the information gained from this port to
DMA both transfer descriptor and packet data. As these data arrive the Front-End Interface
signals the protocol core that data is available.

The current condition of the transaction FIFO is used to drive the block’s Event signal (see
Section 4.5). When a block of this type is instantiated this signal as well as the Fault signal
are automatically connected by the PIC to the ISB (see Section 4.11) and in this fashion FIFO
conditions and/or the presence of a fault can used to trigger processor interrupts. The set of
conditions which may assert the Event signal are configurable through the block’s CSR
register (see Section 6.1.1). This register is accessed through the DCR bus. A discussion of FIFO
configuration is found in Section 4.11.

The specification for the Front-End Interface is found in Section 5.2. The specification for the
Back-End Interface is found in Section 6.1.

The maximum number of PEBs which can be instantiated (consistent with the resources of the
FPGA) can be no greater then sixteen (16).

4.7.1 Parameters

When a block of this type is instantiated (see Section 4.1.4) various block attributes must be
assigned. These include:

Block number This is a small enumeration from zero (0) to 15 (decimal) which is used to
identify the instantiated block. If more then one block of this type is instantiated,
each block must be assigned a unique number. This value is used to establish:

— The relative offset into DCR space for the registers of its Front-End Interface.
See Section 1.3.1 for a discussion of how this identifier maps to an absolute
address on the DCR bus.

— The relative register number and bit offset in both the event and fault source
registers of the ISB (see Section 6.5).

Almost-Full threshold: This parameter specifies the threshold for the Almost-Full condition to
be asserted by the block. See Section 4.4.1 for a discussion of this parameter.

Almost-Empty threshold: This parameter specifies the threshold for the Almost-Empty
condition to be asserted by the block. See Section 4.4.1 for a discussion of this
parameter.

Header length: The length (expressed in bytes) of the header of any packet posted to the block
for export. This parameter is referred to as The Maximum header Length or MHL
(see Section 4.1.1). The value of this parameter must be at least one (1). Its
maximum value must be no larger then the physical address of the CE. To ensure
transfer efficiency, when possible, the value of this parameter should be an even
number of cache-lines (32 bytes).
Draft - for internal distribution only page 47

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
 4.7.2 The PEB’s Transaction FIFO

The PEB’s transaction FIFO is also called the pending export FIFO. This is an asynchronous FIFO
with the capacity to store up to 512 (decimal) entries. As implied by its name this FIFO buffers
pending export transactions. An export transaction is initiated by a protocol driver, processed
by the protocol core and completed by the PIB. The protocol driver writes to and the PIB reads
from this FIFO. What is either inserted or removed from this FIFO is a 32-bit word called a
Transfer Descriptor Entry (TDE). The structure of a TDE for the PEB is illustrated in Figure 20:

where:

IsContiguous: This field specifies the in-memory relationship between the end of a packet’s
header and the beginning of its payload. If this field is true, (set) the PEB assumes
the packet’s header and payload are contiguous with respect to one another. In
such a case, the PEB ignores the Packet Payload field of the corresponding
Transfer Descriptor (see below and Section 4.2). If this field is false (clear), the PEB
assumes the packet is not contiguous and that the location of the packet’s payload
is specified by the Packet Payload field of the corresponding Transfer Descriptor.
This option is useful only when both the following constraints are present:

— The in-memory representation of the packet must be contiguous. Note: this
is by definition and implication true, when the size of the payload is zero (see
Section 4.2).

— The packet’s payload boundary cannot be cache-line aligned as the packet
header length is not evenly divisible by a cache-line (32 bytes).

In all other instances, this field should be false.

Do not complete: This field specifies, whenever a transaction completes successfully, whether
the PEB posts a completion message to an ECB (see Section 4.8.2). The target of this
completion message is determined by the value of the ECB field described below.
If this field is true (set), the PEB will not post a completion message. If this field is
false (clear), the PEB always post a completion message. This option is useful when
export and import transactions are coupled. For example, consider the case of a
command/response type protocol. In such a case, the reception of a response
packet could be used to complete not only the export (command), but also its

Figure 20 Structure of the TDE as used by the PEB

0632

IsContiguous
Do not complete

12

ECB

TDR

Transaction FIFO

TDE
page 48 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
paired import (response) transaction. In turn, this reduces the traffic through the
ECBs of the system and the corresponding interrupts that traffic might generate.
Note: The usage of this field is only applicable to successful transactions. If a
transaction fails, the value of this field is ignored and a completion message is
always posted to the specified ECB.

ECB: A small enumeration which specifies the ECB (see Section 4.8) used to complete
the transaction. These values were established when the ECBs of the CE were
instantiated (see Section 4.1.4 and Section 4.8.1). Note: As failed transaction are
always posted to an ECB, this field must contain a legitimate value independent of
the value of the Do not complete field described above.

TDR: A reference to the corresponding Transfer Descriptor (see Section 4.2). In
actuality, the 26 most significant bits of the Transfer Descriptor’s address as all
Transfer Descriptors must be aligned on a 64-byte boundary and therefore, the
low-order six address bits are assumed zero.

4.7.3 Faults triggered by a Protocol Core

These faults occur in the interface between the protocol core and its corresponding PEB. In
such a case, the TDE corresponding to the fault is not available to the PIC and therefore the
TDE_Fault_Register (see Section 6.1.3) is simply cleared. See the description of the PEB’s
Front-End interface (Section 5.2.2) for more information.

4.7.3.1 Data Pipeline Empty

The protocol core attempted to retrieve data from the block when the block had no data to
deliver. Formally, this corresponds to the protocol core asserting the block’s
Advance_Data_Pipeline signal while its Data_Available signal is not asserted.

4.7.3.2 Status Pipeline Full

The protocol core completes a packet transfer and attempts to communicate completion status
to the PEB. However, the PEB does not have sufficient buffering to accept that completion
status. Most likely, the PEB is not able to pass off this completion status to the ECB specified in
the transaction. Formally, this corresponds to the protocol core asserting the block’s
Advance_Status_Pipeline signal while its Status_Full signal is asserted.

4.7.4 Faults triggered by a Protocol Driver

These faults occur in the interface between the protocol driver and its corresponding PEB. See
the description of the PEB’s Back-End interface (Section 6.1) for more information.
Draft - for internal distribution only page 49

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
4.7.4.1 Invalid Transfer Descriptor

The protocol driver posts a TDE to the block’s transaction FIFO. The PEB fails to de-reference
the Transaction Descriptor pointed to by that TDE. This fault could occur for a variety of
reasons:

— The ECB number specified by the TDE exceeds the last ECB defined for the system.

— The TDR does not correspond to a a valid location in processor memory.

— The TCD address specified in the Transaction descriptor is neither 32-byte aligned nor
corresponds to a valid location in processor memory.

4.7.4.2 No such ECB

The protocol driver posts a TDE whose ECB field points to an ECB not instantiated in the CE.

4.7.4.3 Export FIFO Full

The protocol driver posts a TDE to the block’s transaction FIFO. The FIFO is Full.

4.8 The Export Complete Block

The Export Complete Block (PEB) is used to communicate completed export transactions from
the PIC to a protocol driver. Therefore, the block’s Front-end Interface is connected directly to
the PIC‘s EMB (see Section 4.7) and is opaque to the user. As such, there is a close partnership
between ECB and PEB (see Section 4.7). When a protocol engine completes the transfer of a
packet it notifies its corresponding driver by calling on the services of the ECB’s Front-End
Interface. A driver “waits” on export completion by using the services of the ECB’s Back-End
Interface. A detailed discussion of the export transaction is found in Section 4.12. A block
diagram of this interface is illustrated in Figure 21:
page 50 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
The ECB does not have a Front-end Interface. Instead, as part of the PIC it is automatically
connected to the export cross-point (see Section 4.1.4). This connection allows any of the
instantiated PEBs of the CE to draw on the services of any of the instantiated blocks of this
type.

The Back-End Interface consists principally of an interface to the block’s transaction FIFO. This
FIFO buffers completed export requests. The FIFO’s read port is connected to the processor’s
DCR bus. A protocol driver reads from this port to process completed transactions. The FIFO’s
corresponding write port is implicitly driven by one or more of the instantiated PEBs through
the export cross-point.

The current condition of the transaction FIFO is used to drive the block’s Event signal (see
Section 4.5). When a block of this type is instantiated this signal as well as the Fault signal
are automatically connected by the PIC to the ISB (see Section 4.11) and in this fashion FIFO
conditions and/or the presence of a fault can used to trigger processor interrupts. The set of
conditions which may assert the Event signal are configurable through the block’s CSR
register (see Section 6.2.1). This register is accessed through the DCR bus. A discussion of FIFO
configuration is found in Section 4.11.

The specification for the Back-End Interface is found in Section 6.2.

The maximum number of ECBs which can be instantiated (consistent with the resources of the
FPGA) can be no greater then sixteen (16).

Figure 21 Block diagram of the ECB

Export Complete Block

FIFO

DCR bus

Back-End interface

CSR

to ISB

EventFault

to protocol driver

Fault

from export cross-point
Draft - for internal distribution only page 51

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
4.8.1 Parameters

When a block of this type is instantiated (see Section 4.1.4) various block attributes must be
assigned. These include:

Block number This is a small enumeration from zero (0) to 15 (decimal) which is used to
identify the instantiated block. If more then one block of this type is instantiated,
each block must be assigned a unique number. This value is used to establish:

— The relative offset into DCR space for the registers of its Front-End Interface.
See Section 1.3.1 for a discussion of how this identifier maps to an absolute
address on the DCR bus.

— The relative register number and bit offset in both the event and fault source
registers of the ISB (see Section 6.5).

— The identifier used the protocol driver to specify the completion block to be
used by when completing an import transaction (see Section 4.7.2).

Almost-Full threshold: This parameter specifies the threshold for the Almost-Full condition to
be asserted by the block. See Section 4.4.1 for a discussion of this parameter.

Almost-Empty threshold: This parameter specifies the threshold for the Almost-Empty
condition to be asserted by the block. See Section 4.4.1 for a discussion of this
parameter.

4.8.2 The ECB’s Transaction FIFO

The Export complete FIFO is an asynchronous FIFO with the capacity to store up to 512 entries. As
implied by its name this FIFO contains completed export transactions. An export transaction
was initiated by a protocol driver writing and completed by the ECB. The ECB writes to and
the protocol driver reads from this FIFO. What is either inserted or removed from this FIFO is a
32-bit word called a Transfer Descriptor Entry (TDE). The structure of a TDE for the ECB is
illustrated in Figure 22:

where:

Figure 22 Structure of the TDE as used by the ECB

0632

Exception
TDR

MBZ

1

Transaction FIFO

TDE
page 52 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
Exception: This field describes whether or not the transaction completed with error. If the
field is true (set) the transaction completed with error. In such a case, the TCD
corresponding to the Transaction Descriptor will be written as described in
Section 4.3. I f the field is false (clear) the transaction completed without error. In
such a case, the TCD corresponding to the Transaction Descriptor is left
unchanged.

TDR: A reference to the Transaction Descriptor (see Section 4.2) corresponding to the
completed transaction. In actuality, the 26 most significant bits of the Transaction
Descriptor’s address as all Transaction Descriptors must be aligned on a 64-byte
boundary and therefore, the low order six address bits are assumed zero. The
value of this field is the address of the Transaction Descriptor corresponding to
the transaction request posted to a PEB by the protocol driver (see Section 4.7).

4.8.3 Faults triggered by a Protocol Core

None.

4.8.4 Faults triggered by a Protocol Driver

None.

4.9 The Free-List Block

he Free-List Block (FLB) is used implicitly by a protocol core to allocate memory for incoming
packets. These packets were transferred from network to memory as part of an import
transaction. It is the function of the corresponding protocol driver to keep the freelist full
using the FLB’s Back-End Interface. The FLB is always used in conjunction with a PIB whose
function is to actually perform the necessary transfer using the buffer provided by the FLB.
(see Section 4.10). A more detailed discussion of the import transaction is found in
Section 4.13. A block diagram of this interface is illustrated in Figure 23:
Draft - for internal distribution only page 53

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
The FLB does not have a Front-end Interface. Instead, as part of the PIC it is automatically
connected to the import cross-point (see Section 4.1.4). This connection allows any of the
instantiated ECBs of the CE to draw on the services of any of the instantiated blocks of this
type.

The Back-End Interface consists principally of an interface to the block’s transaction FIFO. This
FIFO contains the set of buffers currently available for allocation by a protocol core. The FIFO’s
write port is connected to the processor’s DCR bus. A protocol driver writes to this port to
replenish the freelist. The FIFO’s corresponding read port is implicitly sampled by one or more
of the instantiated PIBs through the import cross-point.

The current condition of the transaction FIFO is used to drive the block’s Event signal (see
Section 4.5). When a block of this type is instantiated this signal as well as the Fault signal
are automatically connected by the PIC to the ISB (see Section 4.11) and in this fashion FIFO
conditions and/or the presence of a fault can used to trigger processor interrupts. The set of
conditions which may assert the Event signal are configurable through the block’s CSR
register (see Section 6.3.1). This register is accessed through the DCR bus. A discussion of FIFO
configuration is found in Section 4.11.

The description for the TDE associated with the FLB is found in Section 4.9.2.

The specification for the Back-End Interface is found in Section 6.3.

The maximum number of FLBs which can be instantiated (consistent with the resources of the
FPGA) can be no greater then sixteen (16).

4.9.1 Parameters

When a block of this type is instantiated (see Section 4.1.4) various block attributes must be
assigned. These include:

Figure 23 Block diagram of the FLB

Free-List Block

DCR bus

Back-End interface

to ISB

EventFault

to import cross-point

FIFO

CSR

to protocol driver

Fault
page 54 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
Block number This is a small enumeration from zero (0) to 15 (decimal) which is used to
identify the instantiated block. If more then one block of this type is instantiated,
each block must be assigned a unique number. This value is used to establish:

— The relative offset into DCR space for the registers of its Front-End Interface.
See Section 1.3.1 for a discussion of how this identifier maps to an absolute
address on the DCR bus.

— The relative register number and bit offset in both the event and fault source
registers of the ISB (see Section 6.5).

— The identifier used the protocol core to specify the freelist from which it
should allocate a Transaction Descriptor when importing a packet (see
Section 5.2).

Almost-Full threshold: This parameter specifies the threshold for the Almost-Full condition to
be asserted by the block. See Section 4.4.1 for a discussion of this parameter.

Almost-Empty threshold: This parameter specifies the threshold for the Almost-Empty
condition to be asserted by the block. See Section 4.4.1 for a discussion of this
parameter.

Header length: The length (expressed in bytes) of the header of any packet posted to the block
for export. This parameter is referred to as The Maximum header Length or MHL
(see Section 4.1.1). The value of this parameter must be at least one (1). Its
maximum value must be no larger then the physical address of the CE. To ensure
transfer efficiency, when possible, the value of this parameter should be an even
number of cache-lines (32 bytes).

4.9.2 The FLB’s Transaction FIFO

The Freelist FIFO is an asynchronous FIFO with the capacity to store up to 512 entries. As implied
by its name this FIFO contains pending import transactions. An import transaction is initiated
by a driver and completed by the FLB. The driver writes to and the FLB reads from this FIFO.
What is either inserted or removed from this FIFO is a 32-bit word called a Transfer Descriptor
Entry (TDE). The structure of a TDE is illustrated in Figure 24:

Figure 24 Structure of the TDE as used by the FLB

0632

IsContiguous
TDR

MBZ

1

Transaction FIFO

TDE
Draft - for internal distribution only page 55

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
where:

IsContiguous: This field specifies the in-memory relationship between the end of a packet’s
header and the beginning of its payload. If this field is true, (set) the PIB assumes
the packet’s header and payload are contiguous with respect to one another. In
such a case, the PIB ignores the Packet Payload field of the corresponding
Transfer Descriptor (see below and Section 4.2). If this field is false (clear), the PIB
assumes the packet is not contiguous and that the location of the packet’s payload
is specified by the Packet Payload field of the corresponding Transfer Descriptor.
This option is useful only when both the following constraints are present:

— The in-memory representation of the packet must be contiguous. Note: this
is by definition and implication true, when the size of the payload is zero (see
Section 4.2).

— The packet’s payload boundary cannot be cache-line aligned as the packet
header length is not evenly divisible by a cache-line (32 bytes).

In all other instances, this field should be false.

TDR: A reference to the corresponding Transfer Descriptor (see Section 4.2). In
actuality, the 26 most significant bits of the Transfer Descriptor’s address as all
Transfer Descriptors must be aligned on a 64-bit boundary and therefore, the low
order six address bits are assumed zero.

4.9.3 Faults triggered by a Protocol Core

None.

4.9.4 Faults triggered by a Protocol Driver

These faults occur in the interface between the protocol driver and its corresponding FLB. See
the description of the FLB’s Back-End interface (Section 6.3) for more information.

4.9.4.1 Invalid Transfer Descriptor

The protocol driver posts a TDE to the block’s freelist. The FLB fails to de-reference the
Transaction Descriptor pointed to by that TDE. This fault could occur for a variety of reasons:

— The TDR does not correspond to a a valid location in processor memory.

— The TCD address specified in the Transaction descriptor is neither 32-byte aligned nor
corresponds to a valid location in processor memory.

4.9.4.2 Freelist Full

The protocol driver posts a TDE to the block’s freelist. The FIFO is Full.
page 56 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
4.10 The Pending Import Block

The Pending Import Block (PIB) is used by a protocol core to transfer a packet from network to
memory. (an import transaction). The location in memory to transfer the packet was
determined by a FLB (see Section 4.10). The driver uses the Back-End Interface to “wait” on
packet arrivals. A more detailed discussion of the import transaction is found in Section 4.13.
A block diagram of this interface is illustrated in Figure 25:

The PEB’s Front-End Interface is intended to interface with a protocol specific core. That is, a
core’s Back-End receive interface “plugs” into the block’s Front-End interface.

The block’s Back-End Interface consists principally of an interface to the block’s transaction
FIFO. This FIFO buffers pending, completed import transactions. The transactions are
represented as TDEs. The description for the TDE associated with the PIB is found in
Section 4.10.2. The FIFO’s read port is connected to the processor’s DCR bus. A protocol driver
reads from this port in order to process completed import transactions. The PEB controls
access to the FIFO’s corresponding write port and uses the port to signal transaction
completion from the protocol core using its Front-End Interface. This interface is responsible
to DMA both transfer descriptor and received packet data.

The current condition of the transaction FIFO is used to drive the block’s Event signal (see
Section 4.5). When a block of this type is instantiated this signal as well as the Fault signal
are automatically connected by the PIC to the ISB (see Section 4.11) and in this fashion FIFO
conditions and/or the presence of a fault can used to trigger processor interrupts. The set of
conditions which may assert the Event signal are configurable through the block’s CSR
register (see Section 6.4.1). This register is accessed through the DCR bus. A discussion of FIFO
configuration is found in Section 4.11.

Figure 25 Block diagram of the PIB

Pending Import Block

from protocol core

DCR bus

Back-End interfaceFront-End interface

to ISB

EventFault

from import cross-point

FIFO

CSR

to protocol driver

Fault
Draft - for internal distribution only page 57

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
The description for the TDE associated with the PIB is found in Section 4.10.2.

The specification for the Front-End Interface is found in Section 5.3. The specification for the
Back-End Interface is found in Section 6.4.

The maximum number of PIBs which can be instantiated (consistent with the resources of the
FPGA) can be no greater then sixteen (16).

4.10.1 Parameters

When a block of this type is instantiated (see Section 4.1.4) various block attributes must be
assigned. These include:

Block number This is a small enumeration from zero (0) to 15 (decimal) which is used to
identify the instantiated block. If more then one block of this type is instantiated,
each block must be assigned a unique number. This value is used to establish:

— The relative offset into DCR space for the registers of its Front-End Interface.
See Section 1.3.1 for a discussion of how this identifier maps to an absolute
address on the DCR bus.

— The relative register number and bit offset in both the event and fault source
registers of the ISB (see Section 6.5).

Almost-Full threshold: This parameter specifies the threshold for the Almost-Full condition to
be asserted by the block. See Section 4.4.1 for a discussion of this parameter.

Almost-Empty threshold: This parameter specifies the threshold for the Almost-Empty
condition to be asserted by the block. See Section 4.4.1 for a discussion of this
parameter.

4.10.2 The PIB’s Transaction FIFO

The Import Pending FIFO is an asynchronous FIFO with the capacity to store up to 512 entries. As
implied by its name this FIFO contains completed import transactions. An import transaction
was initiated by a driver and completed by the PIB. The PIB writes to and the driver reads from
this FIFO. What is either inserted or removed from this FIFO is a 32-bit word called a Transfer
Descriptor Entry (TDE). The structure of a TDE is illustrated in Figure 26:
page 58 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
where:

Exception: This field describes whether or not the transaction completed with error. If the
field is true (set) the transaction completed with error. In such a case, the
corresponding Transfer Descriptor has the structure described in Section 4.12.2. I f
the field is false (clear) the transaction completed without error. In such a case, the
corresponding Transfer Descriptor has the structure described in Section 4.12.1.

IsMessage: This field specifies the interpretation of the Parameter field (see below). If this
field is clear, the entry corresponds to a completed import transaction and the
Parameter field is a pointer to a Transfer Descriptor. If this field is set, the entry is
a message generated by the protocol engine (see Section 4.14). In such a case the
meaning of the Parameter field is protocol dependent.

Parameter: The interpretation of this field depends on the value of the IsMessage field (see
above). If the IsMessage field is clear, this field is a reference to the Transfer
Descriptor (see Section 4.2) corresponding to the completed transaction. In
actuality, the twenty-six most significant bits of the Transfer Descriptor’s address
as all Transfer Descriptors must be aligned on a 64-bit boundary and therefore,
the low order six address bits are assumed zero. The address was extracted from
the TDE corresponding to the entry from a FLB’s freelist (see Section 4.8.3). If the
message field is set, the meaning of this field is protocol dependent.

4.10.3 Faults triggered by a Protocol Core

These faults occur in the interface between the protocol core and its corresponding PIB. In such
a case, the TDE corresponding to the fault is not available to the PIC and therefore the
TDE_Fault_Register (see Section 6.1.3) is simply cleared. See the description of the PIB’s
Front-End interface (Section 5.3.1) for more information.

Figure 26 Structure of the TDE as used by the PIB

0632

Exception
IsMessage

MBZ

12

Parameter

Transaction FIFO

TDE
Draft - for internal distribution only page 59

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
4.10.3.1 No such FLB

The protocol core requires a transfer descriptor from a Freelist Block (see Section 4.9) not
instantiated in the CE.

4.10.3.2 Data Pipeline Full

The protocol core attempted to send data to the block when the block was full. Formally, this
corresponds to the protocol core asserting the block’s Advance_Data_Pipeline signal
while its Data_Available signal is asserted.

4.10.4 Faults triggered by a Protocol Driver

None.

4.11 The Interrupt Summary Block

The Interrupt Summary Block (ISB) aggregates the Event and Fault signals from the four
types of transfers blocks (See respectively sections 4.7, 4.8, 4.9 and 4.10 for a description of
these blocks). The connections between ISB and instantiated block are created automatically
by the PIC (see Section 4.1.4). Unused ports appear as not asserted. The logical OR of the
Event signals drives the processor’s non-critical interrupt and in an analogous fashion, the
logical OR of the Fault signals drives the processor’s critical interrupt. The current state of all
these signals is reflected in four different DCR registers. A block diagram of this interface is
illustrated in Figure 27:
page 60 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
The specification for the Back-End Interface is found in Section 6.5. For each CE there will be
one and only one, ISB instantiated.

4.11.1 Parameters

For an ISB:

— DCR address offset for its register block

4.12 The Export transaction

Figure 28 illustrates the typical set of operations involved in any one export transaction. The
appropriate protocol driver allocates and initializes both the packet to be transmitted and its

Figure 27 Block diagram of the ISB

Interrupt Summary Block

PEB Event signals
eventlow

DCR bus

Back-End interface

eventhigh

faultlow

faulthigh

PPC critical interrupt
PPC non-critical interrupt

to protocol driver

ECB Event signals
FLB Event signals
PIB Event signals

PEB Fault signals
ECB Fault signals
FLB Fault signals
PIB Fault signals
Draft - for internal distribution only page 61

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
associated Transfer Descriptor and then posts this descriptor to the appropriate PEB. The
causes the block’s transaction FIFO to go Not-Empty, which in turn wakes up the block’s
Front-End Interface, which removes the descriptor from the FIFO, fetches the descriptor and
signals the protocol driver which transmits the packet. When transmission is complete, the
protocol driver signals completion which inserts the descriptor on the transaction FIFO of the
appropriate ECB. In the meanwhile the protocol driver has been waiting on this FIFO to
become Not-Empty. When this FIFO goes Not-Empty, the protocol driver removes the descriptor
and processes the result. Once processing is complete, the protocol driver returns the packet
to its free store.

4.12.1 Data structures for a successful export transaction

When an export transaction completes a TDE has been posted to the appropriate ECB and
subsequently removed by the protocol driver. The low-order (Exception) field of this TDE is
false, indicating the transaction completed without error. The value of its TDR field is identical
to the TDR of the TDE which originated the transaction. Thus the TDR in the completion TDE
points to the original Transaction Descriptor. Because the transaction was successful, the TCD

Figure 28 Typical lifetime of a Transfer Descriptor used to transmit a packet

posts to PEB

construction

waiting for completion

processing

deallocation

allocation

work pending

removes from PEB FIFO

PEB has transaction

pib posts completion message

 waiting for work

done

transmitting

ECB FIFO Not-Empty

work pending

removes from ECB FIFO

Protocol Driver

Protocol Engine

this needs work, ignore...
page 62 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
pointed to by the TCD field within the descriptor was not accessed by the PIC and its contents
are irrelevant to the transaction. All these relationships are illustrated within Figure 29:

4.12.2 Data structures for a failed export transaction

As was the case of a successful transaction, when an export transaction completes a TDE has
been posted to the appropriate ECB and subsequently removed by the protocol driver.
However, this time the low-order (Exception) field of this TDE is true, indicating the
transaction failed. The value of its TDR field is identical to the TDR of the TDE which originated

Figure 29 Data structures involved in a successful export transaction

TCD

Packet Header

Packet Payload

Payload length

Transaction Descriptor

032

Packet payload

0632

MBZ

1

0TDE

Packet header MHL

MPL

ECB Transaction FIFO
Draft - for internal distribution only page 63

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
the transaction. Thus the TDR in the completion TDE points to the original Transaction
Descriptor. Because the transaction failed, the PIC has written the TCD pointed to within the
descriptor. Therefore, the Transferred field of the TCD specifies how many bytes were
successfully transmitted1. The EDW has its low-order bit (wasError) set. The Reason and
Parameter fields have been written with values which describe the specific error (see
Section 4.3). All these relationships are illustrated within Figure 30:

4.13 The Import transaction

Figure 31 illustrates the typical set of operations used in a import transaction. The example
assumes the protocol driver has a-priori allocated receive buffers (and their associated Transfer
Descriptors) and inserted these descriptors on the appropriate FLB’s freelist. When a packet
arrives off the fabric the protocol engine wakes up, locates the appropriate FLB’s freelist and
removes a descriptor. This descriptor specifies where in memory the protocol engine should
locate the received packet. When reception is complete, the protocol engine inserts the

1. In this example, the transaction failed somewhere within transmitting the header.

Figure 30 Data structures involved in an unsuccessful export transaction

0632

MBZ

1

1TDE

TCD

Packet Header

Packet Payload

Payload length

TCD

032

Packet header MHL

ECB Transaction FIFO

Transferred

1

01

Transaction Descriptor

32

reasonparameter

EDW

32 0
page 64 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
descriptor on the appropriate PIB’s FIFO. In the meanwhile the protocol driver has been
waiting on this FIFO. When this FIFO goes not empty, the protocol driver removes the
descriptor and processes the transfer result and its corresponding packet. Once processing is
complete, the driver re-inserts the descriptor back on the appropriate freelist, where it can be
re-used for subsequent transfers.

4.13.1 Data structures for a successful import transaction

When an import transaction completes a TDE has been posted to the appropriate PIB and
subsequently removed by the protocol driver. The low-order (Exception) field of this TDE is
clear, indicating the transaction completed without error. The value of its TDR field is identical
to the TDR of the FLB which provided the buffer for the transaction. Thus, the TDR in the
completion TDE points back to the original Transaction Descriptor. However, unlike an import
transaction, the PIC always, independent of completion status, writes the TCD pointed to by the
Transaction Descriptor. The EDW has its low-order bit (wasError) clear, indicating the

Figure 31 Typical lifetime of a Transfer Descriptor used to receive a packet

waiting for event or packet

removes from freelist FLB

receiving

inserts on PIB FIFO

done

work pending

removes from PIB FIFO

PIB FIFO not empty

inserts on FLB freelist

waiting for work

done

processing

packet pending

packet arrives

Protocol Engine

Protocol Driver

this needs work, ignore...
Draft - for internal distribution only page 65

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
transaction was successful. The remaining fields of the EDW are “don’t care”, however, they
have been initialized to zero (0). The Transferred field contains the length (in bytes) of the
received packet. All these relationships are illustrated in Figure 32:

Figure 32 Data structures involved in a successful import transaction

0632

MBZ

12

00TDE

TCD

Packet Header

Packet Payload

Payload length

Transaction Descriptor

032

Packet payload

Packet header MHL

MPL

TCD

Transferred

0

0132

MBZMBZ

EDW

32 0

PIB Transaction FIFO
page 66 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
4.13.2 Data structures for a failed import transaction

As was the case of a successful import transaction, when a failed import transaction
completes a TDE has been posted to the appropriate PIB and subsequently removed by the
protocol driver. However, this time the low-order (Exception) field of this TDE is set, indicating
the transaction failed. The value of its TDR field is identical to the TDR of the FLB which
provided the buffer for the transaction. Thus the TDR in the completion TDE points back to the
original Transaction Descriptor. Because the transaction failed, the EDW has its low-order bit
(wasError) set. The Reason and Parameter fields have been written with values which
describe the specific error (see Section 4.3). Finally, the Transferred field of the TCD specifies
how many bytes were successfully received. All these relationships are illustrated in
Figure 33:
Draft - for internal distribution only page 67

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
4.14 The protocol engine message transaction

The protocol engine may find the necessity to communicate to its corresponding driver
messages which do not necessarily announce packet arrival, but must be in-band with respect
to the flow of such traffic. For example, in the implementation of an ACK/NACK protocol the

Figure 33 Data structures involved in an unsuccessful import transaction

0632

MBZ

12

PIB Transaction FIFO

10TDE

TCD

Packet Header

Packet Payload

Payload length

Transaction Descriptor

032

Packet payload

Packet header MHL

MPL

TCD

Transferred

1

0132

reasonparameter

EDW

32 0
page 68 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
protocol engine might maintain timers to time out acknowledgments. When these timers fire,
they would inform the driver of the need to either “age” or perhaps re-transmit packets
pending acknowledgment. To allow for this possibility, the PIB provides the protocol core with
the option of posting a TDE which does not contain a reference to a Transfer Descriptor (see
Section 5.3). Such an exchange looks very much like an import operation (see Section 4.13)
and is illustrated in Figure 34.

4.14.1 Data structures for a message transaction

As was the case for any import transaction, when a message transaction completes a TDE has
been posted to the appropriate PIB and subsequently removed by the protocol driver.
However, this time the low-order (Exception) field of the TDE is false, while the Message field
is true. This specifies the TDE contains a message from the protocol core for the protocol driver.
The message is located in the high-order (Parameter) field and is 24 bits long. The
interpretation of this message is protocol dependent. These relationships are illustrated in
Figure 35:

Figure 34 Information exchange for a protocol engine message transaction

waiting for event or packet

inserts on PIB FIFO

done

work pending

removes from PIB FIFO

PIB FIFO not empty

finished

waiting for work

done

processing

event pending

event occurs

Protocol Engine

Protocol Driver

this needs work, ignore...
Draft - for internal distribution only page 69

Cluster Element Module Design proposal
Chapter 4 The Packet Interface Core (PIC) Version/Issue: 0.4/3
Figure 35 Data structures involved in a protocol engine message transaction

0632

MBZ

12

PIB Transaction FIFO-

01TDE

protocol dependent
page 70 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
Chapter 5
The PIC Front-End Interface

5.1 Introduction

5.1.1 Terminology

The implementation body of a data transfer requires clocking information either to or from a
data pipeline. The entrance or exit of this pipeline is called its data port. The width of a data port
is 64-bits, which is either 8 bytes or 1/4 of a processor cache-line. Information is given to or
taken from the pipeline in units of lines, where a line represents from one to seven bytes of
information. One line of data may contain header information, payload information, or both.
A line which presents only header information will be identified as Hn: where n starts at one
(1) and represents the nth clocked line.

A line which presents only payload information is identified as Dn. A line which presents
both header and payload information is identified as HMDM: where M represents the last
clocked line with any header information.

It is the protocol’s responsibility to advance a pipeline. In order to do so both the PEB and PIB
define a signal which is to be asserted by the protocol core:

— For the PEB this signal is Export_Advance_Data_Pipeline (see Section 5.2.2.4)

— For the PIB this signal is Import_Advance_Data_Pipeline (see Section 5.3.1.3)

In either case, a single assertion of this signal will be identified as an: where n starts at zero (0)
for an export transaction and one (1) for an import transaction.

5.1.2 Post-processing and completion status

Independent of packet transmission or reception, once a transaction is complete, a protocol
core will undergo a post-processing phase. This phase must include at a minimum signalling
Draft - for internal distribution only page 71

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
transaction completion to the appropriate block (PEB or PIB). While the specific guidelines for
post-processing depend on whether the core is importing or exporting, the generic guidelines
are as follows:

— Completion must be signalled once and only once per transaction.

— At a minimum, completion is signalled by the protocol core passing a 32-bit structure
called the EDW (see Section 4.3).

— The value of the EDW must mirror transaction status. In particular, if the transaction
succeeds, the low-order (wasError) field must be clear, if the transaction fails, the field
must be set.

— On failure, the value of the EDW must describe the nature of that failure.

The specific guidelines for exporting are described in Section 5.2.5. The specific guides for
importing are described in Section 5.3.4

Note: Failure of a protocol core to follow both these guidelines and the specific rules governing import
and export could result in the fatal operation of a block and subsequent hanging of any I/O requests
processed through the PIC.

5.1.3 What to do if a data or status pipeline is full?

Under exceptional circumstances the block may not be able to consume data given by the
protocol core. In the case of the PEB this circumstance is signified by the assertion of the
Status_Pipeline_Full signal while the protocol core asserts Pipeline_Advance and
for the PIB this circumstance is signified by the Data_Pipeline_Full signal while the
protocol core assert Pipeline_Advance.

tbd...

5.2 Exporting

The PEB’s Front-End-Interface is used by a protocol core to export packets from memory.
Export requests originated with the protocol’s corresponding driver. This driver
communicates these requests by posting to the PEB’s Back-End Interface. After the protocol
core completes a transfer it signals completion status back to the block. Conditionally,
depending on transaction and completion status, the PEB forwards this completion
information (through the export cross-point) to the appropriate ECB. The ECB (see Section 5.2)
would then post this information to the protocol driver which completes the transaction. The
PEB’s Front-End signals are enumerated in Table 6. A detailed discussion of the function of the
PEB is found in Section 4.7. Schematically, from the perspective of the protocol core, any one
transfer involves the following steps:

— The block gains the attention of the protocol core by asserting its Data_Available
signal. This signal remains asserted while the block has at least one packet waiting to
transmit.
page 72 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
— The pipeline is primed by asserting Data_Pipeline_Advance once before clocking
data (see Section 5.2.1 below).

— While Data_Available is asserted, the protocol core reads the packet data from
block’s Data port. The protocol core requests data from that port by asserting
Data_Pipeline_Advance. Each assertion of this signal delivers one line and each
line may contain from to one eight bytes of data. When the last line is made available
by the block, it asserts Data_Last_Line. The last line of data may contain from one
to eight bytes. Odd packet sizes are communicated using the
Data_Last_Valid_Byte port, which specifies how many bytes on the last line are
valid. The structure of the data delivered through this port is discussed in more detail
in Section 5.2.3.

— After the protocol core transfers the packet it must signal transaction completion to
the block. This is accomplished by writing to the block’s Status port. The value(s)
written to that port correspond to the values which are potentially written to the TCD
(see Section 4.3) for the transaction. This process is described in detail within
Section 5.2.5.

5.2.1 Advancing the export pipeline

Note that the signals and ports associated with an export pipeline (see, for example, Data,
Data_Last_Value, and Data_Last_Valid_Byte) are in reality the contents of registers
which are loaded from the outputs of the corresponding bits of the FIFO memory array at the
conclusion of an Clock tick in which Advance_Data_Pipeline is asserted. Thus, the
protocol core control logic must pull each successive data word out of the FIFO memory array
into these output registers prior to absorbing the corresponding data into the protocol core
data pipelines. This arrangement reduces the clock-to-output propagation delay for valid
signals to that of the output registers themselves, instead of having a clock advance the FIFO
memory array address and then having to wait a memory access time for the data to become
valid. This arrangement requires the advance signal to be asserted one clock before its
corresponding line of data is clocked. Therefore, the nth line of data is present at the n + 1
advance, or at An+1.
Draft - for internal distribution only page 73

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
5.2.2 PEB Signal Descriptions

5.2.2.1 Export-Clock

This signal is the clock provided by the protocol core to the block. All other inputs to, and
outputs from the protocol core must be synchronous with respect to this signal. The signal is
assumed to be the output of a Xilinx BUFG global clock buffer. The identical clock buffer
output may be used for multiple instantiations of PIC export logic when the corresponding
instantiations of a class of protocol core permit this – as in the case , for example, of multiple
independent PGP lanes. The clock frequency must be at least 50% of the system (bus) clock
frequency – i.e. the clock period must be less than two periods of the system (bus) clock.

5.2.2.2 Export-Data Available

This signal indicates that a packet is available for the protocol core to transmit. Data for this
packet are read from the Data port described below and are clocked out using the
Advance_Data_Pipeline signal, also described below. This signal is first asserted when
the first line of the packet becomes available. Once asserted, it should remain asserted until the
last line of the packet has been read from the block (and possibly longer, if another packet is
already present in the block). However, there is no guarantee that this condition can always be
met. Such a case is called a transmit data under-run. The responsibilities of the protocol core in
both detecting and handling such a case are enumerated in Section 5.2.5.

Table 6 Signal definitions for the PEB

Signal name Direction1

1. From the perspective of the block.

Description found in:

Export_Clock Input Section 5.2.2.1

Export_Data_Available Output Section 5.2.2.2

Export_Data_Start Output Section 5.2.2.3

Export_Advance_Data_Pipeline Input Section 5.2.2.4

Export_Data_Last_Line Output Section 5.2.2.5

Export_Data_Last_Valid_Byte[0:2] Output Section 5.2.2.6

Export_Data[0:63] Output Section 5.2.2.7

Export_Advance_Status_Pipeline Input Section 5.2.2.8

Export_Status[0:31] Input Section 5.2.2.9

Export_Status_Full Output Section 5.2.2.10

Export_Core_Reset Output Section 5.2.2.11
page 74 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
5.2.2.3 Export-Data Start

this section (and all sections which should describe its use) needs work...

This signal indicates that a packet is available for the protocol core to transmit. Data for this
packet are read from the Data port described below and are clocked out using the
Advance_Data_Pipeline signal, also described below. This signal is first asserted when
the first line of the packet becomes available. Once asserted, it should remain asserted until the
last line of the packet has been read from the block (and possibly longer, if another packet is
already present in the block).

5.2.2.4 Export-Advance Data Pipeline

This signal is the request from the protocol for the next line of data. The line is obtained by
reading the Data port described below. This signal must be asserted only while the
Data_Available signal remains asserted. If this signal is asserted while Data_Available
is not asserted the block will generate a Data Pipeline Empty fault (see Section 4.7.3.1)

5.2.2.5 Export-Data Last Line

This signal indicates that the current line read from the block is the last line of the packet. This
signal will be asserted once and only once per transaction.

5.2.2.6 Export-Data Last Valid Byte

This field indicates the byte offset of the last valid byte in the last transferred line. The
contents of this field are only valid when the Data_Last_Line signal is asserted. A value of
000 (binary) in this field indicates that the only valid byte is located within byte offset 0; while
a value of 111 indicates that the last valid byte is located within byte offset 7 and thus the
entire last line is valid. Note: Byte offsets are numbered in little-endian order.

5.2.2.7 Export-Data

The data port for the block. Packet data are read from the block through this port coincident
with the Adavance_Data_Pipeline signal while Data_Available is active.
Section 5.2.3 describes the structure of data read from this port. All eight bytes returned by a
single advance are valid except when Data_Last_Line is asserted. In which case the
location, relative to the port of the last valid byte, is signified by the simultaneously asserted
value of the Data_Last_Valid_Byte port described above.
Draft - for internal distribution only page 75

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
5.2.2.8 Export-Advance Status Pipeline

This signal is the request from the protocol core to load either the completion status or byte
count to the block’s status FIFO. The value is presented on the Status port described below.
This signal must be asserted only while the Status_Full signal is not asserted. If this signal
is asserted while Status_Full is asserted the block will generate a Status Pipeline Full fault
(see Section 4.7.3.2)

5.2.2.9 Export-Status

The transfer completion status port for the block. Transferred completion status and/or
completion byte counts are clocked by the protocol core to the block through this port
coincident with the Adavance_Status_Pipeline signal while the Status_Full
signal is not asserted. Data must be written to this port at least once and no more then twice
for each transaction. See Section 5.2.5 for a description of that data.

5.2.2.10 Export-Status Full

This signal is the back-pressure line from the block to the protocol core. In the normal course
of operation this signal should never be asserted. It signifies that the block does not have
enough capacity to absorb either EDW or transfer count. The protocol core must wait until this
signal is deasserted before loading either EDW or transfer count into the Status port. If
Advance_Status_Pipeline is asserted while this signal is also asserted the block will
generate a Status Pipeline Full fault (see Section 4.7.3.2) See Section 5.1.3 for guidelines
concerning the use of this signal.

5.2.2.11 Export-Core Reset

This signal is a request to reset the transmit side of the protocol core.This is a pulse which
started life as a pulse in the system clock domain with a minimum width of two clock ticks. It
then passes through a two-stage synchronizer moving it into the block’s Clock domain. As
long as the Clock signal has a frequency which is at least 50% of the system clock frequency,
this pulse will have a minimum duration of one tick of the Clock signal. The pulse can have
one of three origins:

— The protocol driver through the block’s CSR (see Section 6.1.1).

— The Global reset signal.

5.2.3 Transfer data structure

The structure of the data read through the block’s Data port consists of two components:
page 76 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
Header: The packet header. The header’s length is fixed and was determined by an
instantiation parameter for the block. However, note that the size of the header is
not necessarily an even number of lines. The header is emitted on the first
advance.

Payload: The packet payload. Unlike the header, the payload’s length is not fixed and will
vary from one transfer to the next. The payload follows immediately after the last
byte of the header and continues until the Last_Word signal is asserted. If the
header was not an even number of lines, the advance which fetches the end of the
header will also include some fraction of the beginning payload bytes. As was the
case with the header, the payload may not be an even number of lines. In such a
case, the Last_Valid_Bytes port is used to determine the fractional remainder.

As an example, consider a packet which is composed of a header 18 bytes long and a payload
52 bytes long. Assuming the first advance (A0) has previously been asserted, the data for this
packet from the Data port as illustrated in Figure 36:

Rounding the header up to an integral number of lines, three advances are required to transfer
the header. The first two advances read the first sixteen bytes, while the last advance reads the
last two bytes. The first bye of the packet payload immediately follows the header and
therefore the third advance also returns the first six bytes of payload. Six additional advances
are required to clock the remainder of the packet. As the advance signal is one clock ahead of
its corresponding line, the last advance reads the last line and this line is partially filled with
six bytes.

5.2.4 Timing examples

A hypothetical timing diagram for the packet illustrated in Figure 36 is shown in Figure 37.
Recall that this packet is contained in nine lines.

Figure 36 Transfer structure for the PEB.

1
2
3
4
5
6
7

transmit Data

A3A1 A8

0

header
payload
don’t care

legend
Draft - for internal distribution only page 77

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
Immediately after detecting the block has a transaction to process (Data_Available is
asserted), the protocol core asserts Advance_Data_Pipeline. This initial advance primes
the data pipeline. Data can now begin to be clocked through the data port. Eight additional
advances are required to obtain the entire packet. At the ninth line the block asserts
Last_Line. Coincident with that assertion, sampling the Last_Valid_Byte port returns a
value of six indicating that the last line contains only six valid bytes. Once Last_Line is
deasserted the entire packet has been transferred. Immediately following this deassertion the
protocol core completes the transaction by writing the appropriate EDW (see Section 5.2.5) to
the Status port.

As another example, assume the driver has queued three packet transfers requests and each
packet consists of only a sixteen byte header with no payload. The timing diagram for this
scenario is illustrated in Figure 38:

Figure 37 Timing diagram (one transfer) for the PEB

Last_Valid_Byte

Advance_Status_Pipeline

110

Data_Available

Data
H1 H2 H3D3 D4 D6 D7 D8 D9D5

Adavance_Data_Pipeline

Clock

Status
EDW

Last_Line

Status_Full

a0 a1 a2 a3 a4 a5 a6 a7 a8

Data_Start
page 78 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
5.2.5 Export Post-processing

The protocol core must follow both the generic guidelines for post-processing as defined in
Section 5.1.2 and the specific guidelines for exporting as outlined below:

The transfer succeeds: In such a case the protocol core’s responsibility is two-fold:

— It must assert completion to the block. Completion is asserted by writing once to the
block’s Status port.

— The asserted value must correspond to the EDW for the transaction (see Section 4.3)
The constraints on the values of its fields in this case are as follows:

— The WasError field of the must be false (clear).

— The Reason field is “Don’t Care”.

— the WasBlock field is “Don’t Care”.

— The Parameter field is “Don’t Care”.

The transfer fails due to a data under-run error: This is an example of the type of error which
had its origin in the system, but which can only be detected by the protocol core.
The definition of this type of error is as follows:

Data_Available is deasserted before Data_Last during packet transmission.

In such a case the protocol core’s responsibility is four-fold:

— It must detect this type of error.

— It must assert completion to the block. Completion is asserted by writing twice to the
block’s Status port.

Figure 38 Timing diagram for PEB three packet transfer

transfer1

CLK

transfer2 transfer3

Ignore - this still needs some work...
Draft - for internal distribution only page 79

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
— It must advance all the packet’s data, independent of where within the transmission
under-run occurred. Presumably the data following the under-run is simply
discarded, but its actual disposition will be protocol specific. For example, the
protocol could “poison” the transmitted packet, but continue its transmission to the
“wire”.

— The value asserted first must correspond to the EDW for the transaction (see
Section 4.3). The constraints on the values of its fields in this particular case are as
follows:

— The WasError field of the must be true (set).

— The WasBlock field must be true (set).

— The Reason field must have the value DATA_UNDER_RUN (63 decimal).

— The Parameter field must be zero.

— The second value written must be the number of bytes successfully transmitted.
Writing this value must follow (but not necessarily immediately) writing the EDW.
The byte count must be written once and only once per failed transaction.

The transfer fails due to a protocol error: In such a case the protocol core’s responsibility is
three-fold:

— It must assert completion to the block. Completion is asserted by writing twice per to
the block’s Status port.

— It must advance all the packet’s data, independent of independent of where within
the transmission under-run occurred. Presumably the data following the error is
simply discarded, but its actual disposition will be protocol specific. For example, the
protocol could “poison” a transmitted packet, but continue its transmission to the
“wire”.

— The value asserted first must correspond to the EDW for the transaction (see
Section 4.3). The constraints on the values of its fields in this case are as follows:

— The WasError field of the must be true (set).

— The WasBlock field must be false (clear).

— The Reason field must have a value appropriate to the transfer error. All
unique errors should be assigned unique numbers.

— The Parameter field should have a value appropriate to the error.

— The second value written must be the number of bytes successfully transferred.
Writing this value must follow (but not necessarily immediately) writing the EDW.
The byte count must be written once and only once per failed transaction.

In short the protocol core must adhere to the following rules:

— Independent of success or failure, transfer completion must be signalled by writing at
least once and at most twice to the block’s Status port. Completion may be signalled
at any point within or without the actual transfer, but it must be signalled in the same
order that transactions were processed and retired.
page 80 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
— Completion is signalled at a minimum by writing an EDW appropriate to the
transaction. The appropriate value for the EDW is determined by whether or not the
transaction failed and if it did fail, the nature of that failure.

— If the transaction does fail, the protocol core must write a second value (after the
EDW) to the block’s Status port. This value must contain the number of bytes
successfully transmitted or received before the failure was detected.

5.3 Importing

The PIB’s Front-End-Interface is used by a protocol core to import packets to memory. Once a
packet has been transferred the PIB signals the corresponding protocol driver that it has one or
more packets pending to process. The PIB’s Front-End signals are enumerated in Table 7. A
detailed discussion of the function of the PIB is found in Section 4.8. Schematically, from the
perspective of the protocol core, any one packet transfer involves the following steps:

— When the protocol core has a packet ready to import it gains the attention of the block
by asserting its Data_Pipeline_Advance signal and its first line of packet data.

— Coincident with this assertion, the protocol core specifies the freelist from which the
memory to contain the packet will be allocated.

— The protocol core delivers the packet’s data to the block through its Data port. The
protocol core writes data to that port by asserting Data_Pipeline_Advance. Each
assertion of this signal delivers one line and each line contains from to one eight bytes
of data. When the last line is made available to the block, the protocol core asserts
Data_Last_Line. The last line of data may contain from one to eight bytes. Odd
packet sizes are communicated using the Data_Last_Valid_Byte port, which
specifies how many bytes on the last line are valid. The structure of the data
delivered to this port is discussed in more detail in Section 5.3.2.

— After the protocol core transfers the packet it must signal transaction completion to
the block. This is accomplished by again writing to the block’s Data port. The value
written to that port correspond to the values which are written to the TCD (see
Section 4.3) for the transaction. This process is described in detail within Section 5.3.4.
Draft - for internal distribution only page 81

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
5.3.1 PIB Signal Descriptions

5.3.1.1 Import-Clock

This signal is the clock provided by the protocol core to the block. All other inputs to, and
outputs from the protocol core must be synchronous with respect to this signal. The signal is
assumed to be the output of a Xilinx BUFG global clock buffer. The identical clock buffer
output may be used for multiple instantiations of PIC export logic when the corresponding
instantiations of a class of protocol core permit this – as in the case , for example, of multiple
independent PGP lanes. The clock frequency must be at least 50% of the system (bus) clock
frequency – i.e. the clock period must be less than two periods of the system (bus) clock.

5.3.1.2 Import-Freelist

This field specifies the identity of the freelist block (FLB) from which the TDE and related
descriptor will be removed in order to process an import data packet. This field is only valid
when loading the first data word in an import packet into the block. Specifying an illegal
value of this field when loading the first word of an import data packet will result in a No
such FLB fault (see Section 4.10.3.1) fault generated by the block when that word is attempted
to be DMA’d to memory. In such a case, the remainder of the packet will be discarded by the
block.

5.3.1.3 Import-Advance Data Pipeline

This signal is the request from the protocol core to write the next line to the block. The line is
written to the Data port described below. This signal must be asserted only while the FULL

Table 7 Signal definitions for the PIB

Signal name Direction1

1. From the perspective of the block.

Description found in:

Import_Clock Input Section 5.3.1.1

Import_Free_List[0:3] Input Section 5.3.1.2

Import_Advance_Data_Pipeline Input Section 5.3.1.3

Import_Data_Last_Line Input Section 5.3.1.4

Import_Data_Last_Valid_Byte[0:2] Input Section 5.3.1.5

Import_Data[0:63] Input Section 5.3.1.6

Import_Data_Pipeline_Full Output Section 5.3.1.7

Import_Core_Reset Output Section 5.3.1.8
page 82 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
signal is not asserted. If this signal is asserted while FULL is also asserted the block will
generate a Data Pipeline Full fault (see Section 4.10.3.2)

5.3.1.4 Import-Data Last Line

This signal indicates that the current line written to the block is the last line of the packet. This
signal must be asserted once and only once per transaction.

5.3.1.5 Import-Data Last Valid Byte

This field indicates the byte offset of the last valid byte in the last transferred line. The
contents of this field are only valid when the Data_Last_Line signal is asserted. A value of
000 (binary) in this field indicates that the only valid byte is located within byte offset 0; while
a value of 111 indicates that the last valid byte is located within byte offset 7 and thus the
entire last line is valid. Note: Byte offsets are numbered in little-endian order.

5.3.1.6 Import-Data

The data port for the block. Both packet data and completion information are written to the
block through this port coincident with the Adavance_Data_Pipeline signal while Full
is inactive. Section 5.2.3 describes the structure of data written to this port. All eight bytes
written by a single advance are valid except when Data_Last_Line is asserted. In which
case the location, relative to the port of the last valid byte, is signified by the simultaneously
asserted value of the Data_Last_Valid_Byte port described above.

5.3.1.7 Import-Data Pipeline Full

This signal is the back-pressure line from the block to the protocol core. In the normal course
of operation this signal should never be asserted. It signifies that the block does not have
enough capacity to absorb either packet data or EDW. The protocol core must wait until this
signal is deasserted before loading either packet data or EDW into the Data port. If
Advance_Data_Pipeline is asserted while this signal is also asserted the block will
generate a Data Pipeline Full fault (see Section 4.10.3.2) See Section 5.1.3 for guidelines
concerning the use of this signal.

5.3.1.8 Import-Core Reset

This signal is a request to reset the receive side of the protocol core.This is a pulse which
started life as a pulse in the system clock domain with a minimum width of two clock ticks. It
then passes through a two-stage synchronizer moving it into the block’s Clock domain. As
long as the Clock signal has a frequency which is at least 50% of the system clock frequency,
this pulse will have a minimum duration of one tick of the Clock signal. The pulse can have
one of three origins:
Draft - for internal distribution only page 83

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
— Front-End interface

— Global reset

5.3.2 Transfer data structure

The structure of the data written to the block’s Data port consists of three components:

Header: The packet header. The header’s length is fixed and was determined by an
instantiation parameter for the block. However, note that the size of the header is
not necessarily an even number of lines. The header is emitted on the first
advance.

Payload: The packet payload. Unlike the header, the payload’s length is not fixed and will
vary from one transfer to the next. The payload follows immediately after the last
byte of the header and continues until the Last_Word signal is asserted. If the
header was not an even number of lines, the advance which fetches the end of the
header will also include some fraction of the beginning payload bytes. As was the
case with the header, the payload may not be an even number of lines. In such a
case, the Last_Valid_Bytes port is used to determine the fractional remainder.

EDW: The transaction completion status. See Section 4.3 for a discussion of the EDW and
its format. See Section 5.3.4 for a discussion on how completion is signalled back
to the block.

As an example, consider a packet which is composed of a header 18 bytes long and a payload
52 bytes long. The data for this packet flows into the Data port as illustrated in Figure 39:

Rounding the header up to an integral number of lines, three advances are required to write
the header. The first two advances write the first sixteen bytes, while the last advance writes
the last two bytes. The first bye of the packet payload immediately follows the header and
therefore the third advance also writes the first six bytes of payload. Six additional advances
are required to clock the remainder of the packet. The last of these six advances writes the last
line of the packet and this line is partially filled with six bytes. The 10th and last advance will
contain the EDW for the transaction.

Figure 39 Transfer structure for the PEB.

1
2
3
4
5
6
7

receive Data

A2 A0A8

0

header
payload
don’t care

legend

A9

EDW
page 84 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
5.3.3 Timing examples

A hypothetical timing diagram for the packet illustrated in Figure 39 is shown in Figure 40.
Recall that this packet is contained in nine lines.

The protocol core asserts Advance_Data_Pipeline. This signals the block that the protocol
core has a packet to import. Coincident with that advance the protocol core asserts both a
freelist number and the first line of packet data. The value asserted to the Free_List port
specifies the FLB (see Section 4.9) from which the memory for the packet will be allocated.
Eight additional advances are then asserted to write the remainder of the packet. On the ninth
advance the protocol core asserts Last_Line. Coincident with that assertion, the protocol
core also loads the Last_Valid_Byte port with a value of six indicating that the last line
contains only six valid bytes. Once Last_Line is deasserted the entire packet has been
transferred. Immediately following this deassertion the protocol core completes the
transaction by writing the appropriate EDW (see Section 5.3.4) to the Data port.

As another example, assume the protocol core receives three packets back-to-back and each
packet consists of only a sixteen byte header with no payload. The timing diagram for this
scenario is illustrated in Figure 41:

Figure 40 Timing diagram (one transfer) for the PIB

Clock

Last_Valid_Byte
110

Data
H1 H2 H3D3 D4 D6 D7 D8 D9D5

Adavance_Data_Pipeline

EDW

Last_Line

Full

Free_List
111

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
Draft - for internal distribution only page 85

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
5.3.4 Import Post-processing

The protocol core must follow both the generic guidelines for post-processing as defined in
Section 5.1.2. and the specific guidelines for importing as outlined below:

The transfer succeeds: In such a case the protocol core’s responsibility is two-fold:

— It must assert completion to the block. Completion is asserted by writing once to the
block’s Data port. The value must be asserted after Last_line.

— The asserted value must correspond to the EDW for the transaction (see Section 4.3).
The constraints on the values of its fields in this case are as follows:

— The WasError field of the must be false (clear).

— The Reason field is “Don’t Care”.

— the WasBlock field is “Don’t Care”.

— The Parameter field is “Don’t Care”.

The transfer fails due to a data over-run error: This is an example of the type of error which
had its origin in the system, but which can only be detected by the protocol core.
The definition of this type of error is as follows:

Data_Available is deasserted before Data_Last during packet transmission.

In such a case the protocol core’s responsibility is three-fold:

— It must detect this type of error.

— It must assert completion to the block. Completion is asserted by writing once to the
block’s Data port. The value must be asserted after Last_line.

— The asserted value must correspond to the EDW for the transaction (see Section 4.3).
The constraints on the values of its fields in this particular case are as follows:

— The WasError field of the must be true (set).

Figure 41 Timing diagram for PIB three packet transfer

transfer1

CLK

transfer2 transfer3

Ignore - this still needs some work...
page 86 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
— The WasBlock field must be true (set).

— The Reason field must have the value DATA_OVER_RUN (62 decimal).

— The Parameter field must be zero.

The transfer fails due to a protocol error: In such a case the protocol core’s responsibility is
two-fold:

— It must assert completion to the block. Completion is asserted by writing once to the
block’s Data port. The value must be asserted after Last_line.

— The asserted value must correspond to the EDW for the transaction (see Section 4.3).
The constraints on the values of its fields in this case are as follows:

— The WasError field of the must be true (set).

— The WasBlock field must be false (clear).

— The Reason field must have a value appropriate to the transfer error. All
unique errors should be assigned unique numbers.

— The Parameter field should have a value appropriate to the error.

In short the protocol core must adhere to the following rules:

— Independent of success or failure, transfer completion must be signalled by writing
once and only once per transaction. Completion must be signalled after Last_line
has been asserted.

— Completion is signalled by writing an EDW appropriate to the transaction. The EDW is
written to the block’s Data port. The appropriate value for the EDW is determined by
whether or not the transaction failed and if it did fail, the nature of that failure.
Draft - for internal distribution only page 87

Cluster Element Module Design proposal
Chapter 5 The PIC Front-End Interface Version/Issue: 0.4/3
page 88 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
Chapter 6 The PIC DCR Interface

6.1 The PEB (Pending Export Block)

The Back-End interface to the PEB consists principally of four registers1, one of which is
reserved for future use. One of the four registers is used for setup and control of the PEB, one
register is an interface to the write port of the PEB’s transaction FIFO and one register contains
the potential fault parameter. The location of these registers on the DCR bus relative to one
another is enumerated in Table 8. The absolute location of these registers is specified as a
block instantiation parameter and is discussed in Section 1.3. For a detailed discussion of the
functionality of the PEB see Section 4.7.

6.1.1 Control and Status Register (CSR)

This register manages the configuration and setup of the block. Principally, this implies
establishing the conditions under which the block will assert its Event signal. This signal is
connected to the ISB (see Section 6.5) where it may be used to trigger a processor interrupt.

1. See also the interrupt interface described in Section 6.5.1.

Table 8 Register offsets for the PEB

Offset1

1. In words

Name Description

0 PEB_CSR Control and Status Register. See Section 6.1.1

1 EXPORT_PENDING Write port of the block’s transaction FIFO. See Section 6.1.2

2 EXPORT_FAULT Contains the TDE associated with a fault. See Section 6.1.3

3 PEB_RESERVED Must be zero.
Draft - for internal distribution only page 89

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
Note: this register provides for selective set and clear of its fields. The low order 16 bits
constitute the fields which can be changed and the high order 16 bits are the corresponding
field enables. See Section 1.3.2 for a discussion of these types of fields.

The structure of this register is illustrated in Figure 42:

Where:

Reset: This field is used to reset the corresponding block. This field may only be set. Any
access which attempts to clear this field will be ignored. Asserting (setting) this
field triggers a reset of the block. While the reset is in progress the field remains
set. The value of any other field of the register during this time is indeterminate.
After the reset is complete, the field is cleared. While a reset is in progress any
requests to modify the block’s state are ignored. This includes writing fields of
this register or any other register, as well as any operation which implicitly or
explicitly writes to the block’s FIFOs. The result of reading a a block’s transaction
FIFO while a reset is in progress are indeterminate. A reset flushes all entries
buffered in any of the block’s FIFOs, resets all its DCR registers, and returns all the
block’s internal State Machines to their initial state. Therefore, after reset is
complete:

— all FIFOs are empty

— the Event signal is masked

— a pending fault (if any) is flushed

— the Event Triggers and Event Conditions fields are set to zero

Fault Pending: This field indicates the presence of a fault. If this field is set, a fault is pending.
To dismiss a pending fault this field must be cleared. See Section 4.6 for the
description of a fault.

Figure 42 PEB CSR register

1

Reset Protocol Core
Event Enable

23 0

Reset
Fault Pending

4

Not-Empty
Almost Empty
Almost Full
Full

Event Triggers
Event Conditions

0123

81216

MBZ

32

Field enables

R/O
page 90 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
Reset Protocol core: This field is used to reset the protocol core. In actuality, setting this field
asserts a pulse on the Core_Reset signal of the PEB’s Front-end-Interface (see
Section 5.2.2.11). This field may only be set. Any access which attempts to clear
this field will be ignored.

Event Enable: This field allows the block to assert its Eventsignal whenever the conditions
specified by the Event Triggers field (see below) are true. When this field is set, the
Event signal is enabled. When this field is clear, the signal is masked (disabled). See
Section 4.5 for the description of an event.

Event Triggers: This field enumerates which combination of the four possible conditions of
the block’s transaction FIFO will assert the block’s Event signal (Assuming
events are enabled, see above). In turn, this field is divided into four sub-fields
with the offset of each field corresponding to a specific condition. If a sub-field is
set and the corresponding condition in the transaction FIFO is present, the Event
signal will be asserted. If a field is clear, independent of the state of the
corresponding condition in the transaction FIFO, the Event signal will not be
asserted.See Section 4.5 for the description of an event and its corresponding
signal.

Event Conditions: This field enumerates which combination of the four possible transaction
FIFO conditions are currently asserted. As with the Event Triggers field described
above, this field is divided into four sub-fields with the offset of each field
corresponding to a specific condition. If a sub-field is set, the corresponding
condition is present. If a field is clear, the condition is not present. The values of
this field are independent of the state of the Event Enable field (see above). Note:
This field is Read-Only. See Section 4.5 for the description of an event and its
corresponding signal.

Field enables: The low-order 16 bits of this register are Selective Set and Clear. This field forms
the write enables for those 16 bits. See Section 1.3.2 for an explanation of how this
field is to be used.

6.1.2 Export Pending Register

This register is an interface to the write port of the block’s transaction FIFO. When written, the
corresponding value is inserted at the FIFO’s tail. If, when written, the FIFO is full, the written
value is discarded and the block generates a Export FIFO Full fault (see Section 4.7.4.3). The
structure of any value written to the FIFO follows the conventions specified for a Transfer
Descriptor Entry (TDE). The structure of the TDE for this particular type of block is described
in Section 4.7.2. When read, the returned value is always zero. The structure of this register is
illustrated in Figure 43:
Draft - for internal distribution only page 91

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
6.1.3 Export Fault Register

In the eventuality that usage of the block asserts an fault, this register contains the offending
TDE. The structure of a TDE for this particular type of block is described in Section 4.7.2. The
contents of this register are only valid while the Fault Pending field of the CSR register is
asserted. See Sections 4.6, 4.7.3 and 4.7.4 for a discussion of fault processing. The structure of
this register is illustrated in Figure 44:

6.2 The ECB (Export Complete Block)

The Back-End interface to the ECB consists principally of four registers, one of which is
reserved for future use. One of the four registers is used for setup and control of the PEB, one
register is an interface to the read port of the ECB’s transaction FIFO and one register contains
the potential fault parameter. The location of these registers on the DCR bus relative to one
another is enumerated in Table 8. The absolute location of these registers is specified as a
block instantiation parameter and is discussed in Section 1.3. For a detailed discussion of the
functionality of the ECB see Section 4.8.

Figure 43 Export Pending Register

032

TDE

Figure 44 Export Fault Register

032

TDE

Table 9 Register offsets for the ECB

Offset1

1. In bytes

Name Description

0 ECB_CSR Control and Status Register. See Section 6.2.1

1 EXPORT_COMPLETE Read port of the transaction FIFO. See Section 6.2.2

2 EXPORT_COMPLETE_FAULT Contains the TDE associated with an fault. See Section 6.2.3

3 ECB_RESERVED Must be zero.
page 92 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
6.2.1 Control and Status Register (CSR)

This register manages the configuration and setup of the block. Principally, this implies
establishing the conditions under which the block will assert its Event signal. This signal is
connected to the ISB (see Section 6.5) where it may be used to trigger a processor interrupt.

Note: this register provides for selective set and clear of its fields. The low order 16 bits
constitute the fields which can be changed and the high order 16 bits are the corresponding
field enables. See Section 1.3.2 for a discussion of these types of fields.

The structure of this register is illustrated in Figure 45:

Where:

Reset: This field is used to reset the corresponding block. This field may only be set. Any
access which attempts to clear this field will be ignored. Asserting (setting) this
field triggers a reset of the block. While the reset is in progress the field remains
set. The value of any other field of the register during this time is indeterminate.
After the reset is complete, the field is cleared. While a reset is in progress any
requests to modify the block’s state are ignored. This includes writing fields of
this register or any other register, as well as any operation which implicitly or
explicitly writes to the block’s FIFOs. The result of reading a a block’s transaction
FIFO while a reset is in progress are indeterminate. A reset flushes all entries
buffered in any of the block’s FIFOs, resets all its DCR registers, and returns all the
block’s internal State Machines to their initial state. Therefore, after reset is
complete:

— all FIFOs are empty

— the Event signal is masked

— a pending fault (if any) is flushed

Figure 45 ECB CSR register

1

Event Enable
Event Triggers

23 0

Reset
Fault Pending

4

Not-Empty
Almost Empty
Almost Full
Full

Event Conditions
Field enables

0123

81216

MBZ

32

R/O
Draft - for internal distribution only page 93

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
— the Event Triggers and Event Conditions fields are set to zero

Fault Pending: This field indicates the presence of a fault. If this field is set, a fault is pending.
To dismiss a pending fault this field must be cleared. See Section 4.6 for the
description of a fault.

Event Enable: This field allows the block to assert its Eventsignal whenever the conditions
specified by the Event Triggers field (see below) are true. When this field is set, the
Event signal is enabled. When this field is clear, the signal is masked (disabled). See
Section 4.5 for the description of an event.

Event Triggers: This field enumerates which combination of the four possible conditions of
the block’s transaction FIFO will assert the block’s Event signal (Assuming
events are enabled, see above). In turn, this field is divided into four sub-fields
with the offset of each field corresponding to a specific condition. If a sub-field is
set and the corresponding condition in the transaction FIFO is present, the Event
signal will be asserted. If a field is clear, independent of the state of the
corresponding condition in the transaction FIFO, the Event signal will not be
asserted.See Section 4.5 for the description of an event and its corresponding
signal.

Event Conditions: This field enumerates which combination of the four possible transaction
FIFO conditions are currently asserted. As with the Event Triggers field described
above, this field is divided into four sub-fields with the offset of each field
corresponding to a specific condition. If a sub-field is set, the corresponding
condition is present. If a field is clear, the condition is not present. The values of
this field are independent of the state of the Event Enable field (see above). Note:
This field is Read-Only. See Section 4.5 for the description of an event and its
corresponding signal.

Field enables: The low-order 16 bits of this register are Selective Set and Clear. This field forms
the write enables for those 16 bits. See Section 1.3.2 for an explanation of how this
field is to be used.

6.2.2 Export Complete Register

This register is an interface to the read port of the block’s transaction FIFO. When read, the
returned value corresponds to the entry at the FIFO’s head. The structure of any returned
entry follows the conventions specified for a Transfer Descriptor Entry (TDE). The structure of
the TDE for this particular register is described in Section 4.8.2. If the returned value is four (4),
the FIFO was empty. The structure of this register is illustrated in Figure 46:

Figure 46 Export Complete Register

032

TDE
page 94 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
6.2.3 Export Complete Fault Register

In the eventuality that usage of the block asserts an fault, this register contains the offending
TDE. The structure of a TDE for this particular type of block is described in Section 4.8.2. The
contents of this register are only valid while the Fault Pending field of the CSR register is
asserted. See Sections 4.6, 4.7.3 and 4.7.4 for a discussion of fault processing. The structure of
this register is illustrated in Figure 47:

6.3 The FLB (Freelist Block)

The Back-End interface to the ECB consists principally of four registers1, one of which is
reserved for future use. One of the four registers is used for setup and control of the FLB, one
register is an interface to the write port of the FLB’s transaction FIFO and one register contains
the potential fault parameter. The location of these registers on the DCR bus relative to one
another is enumerated in Table 10. The absolute location of these registers is specified as a
block instantiation parameter and is discussed in Section 1.3. For a detailed discussion of the
functionality of the ECB see Section 4.8.3.

Figure 47 Export Complete Fault Register

032

TDE

1. See also the interrupt interface described in Section 6.5.1.

Table 10 Register offsets for the FLB

Offset1

1. In bytes

Name Description

0 FLB_CSR Control and Status Register. See Section 6.3.1

1 FREELIST Write port of the block’s transaction FIFO. See Section 6.3.2

2 FREELIST_FAULT Contains the TDE associated with an fault. See Section 6.3.3

3 FLB_RESERVED Must be zero.
Draft - for internal distribution only page 95

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
6.3.1 Control and Status Register (CSR)

This register manages the configuration and setup of the block. Principally, this implies
establishing the conditions under which the block will assert its Event signal. This signal is
connected to the ISB (see Section 6.5) where it may be used to trigger a processor interrupt.

Note: this register provides for selective set and clear of its fields. The low order 16 bits
constitute the fields which can be changed and the high order 16 bits are the corresponding
field enables. See Section 1.3.2 for a discussion of these types of fields.

The structure of this register is illustrated in Figure 48:

Where:

Reset: This field is used to reset the corresponding block. This field may only be set. Any
access which attempts to clear this field will be ignored. Asserting (setting) this
field triggers a reset of the block. While the reset is in progress the field remains
set. The value of any other field of the register during this time is indeterminate.
After the reset is complete, the field is cleared. While a reset is in progress any
requests to modify the block’s state are ignored. This includes writing fields of
this register or any other register, as well as any operation which implicitly or
explicitly writes to the block’s FIFOs. The result of reading a a block’s transaction
FIFO while a reset is in progress are indeterminate. A reset flushes all entries
buffered in any of the block’s FIFOs, resets all its DCR registers, and returns all the
block’s internal State Machines to their initial state. Therefore, after reset is
complete:

— all FIFOs are empty

— the Event signal is masked

— a pending fault (if any) is flushed

— the Event Triggers and Event Conditions fields are set to zero

Figure 48 FLB CSR register

1

Event Enable
Event Triggers

23 0

Reset
Fault Pending

4

Not-Empty
Almost Empty
Almost Full
Full

Event Conditions
Field enables

0123

81216

MBZ

32

R/O
page 96 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
Fault Pending: This field indicates the presence of a fault. If this field is set, a fault is pending.
To dismiss a pending fault this field must be cleared. See Section 4.6 for the
description of a fault.

Event Enable: This field allows the block to assert its Eventsignal whenever the conditions
specified by the Event Triggers field (see below) are true. When this field is set, the
Event signal is enabled. When this field is clear, the signal is masked (disabled). See
Section 4.5 for the description of an event.

Event Triggers: This field enumerates which combination of the four possible conditions of
the block’s transaction FIFO will assert the block’s Event signal (Assuming
events are enabled, see above). In turn, this field is divided into four sub-fields
with the offset of each field corresponding to a specific condition. If a sub-field is
set and the corresponding condition in the transaction FIFO is present, the Event
signal will be asserted. If a field is clear, independent of the state of the
corresponding condition in the transaction FIFO, the Event signal will not be
asserted.See Section 4.5 for the description of an event and its corresponding
signal.

Event Conditions: This field enumerates which combination of the four possible transaction
FIFO conditions are currently asserted. As with the Event Triggers field described
above, this field is divided into four sub-fields with the offset of each field
corresponding to a specific condition. If a sub-field is set, the corresponding
condition is present. If a field is clear, the condition is not present. The values of
this field are independent of the state of the Event Enable field (see above). Note:
This field is Read-Only. See Section 4.5 for the description of an event and its
corresponding signal.

Field enables: The low-order 16 bits of this register are Selective Set and Clear. This field forms
the write enables for those 16 bits. See Section 1.3.2 for an explanation of how this
field is to be used.

6.3.2 Freelist Register

This register is an interface to the write port of the block’s transaction FIFO. When written, the
corresponding value is inserted at the FIFO’s tail. If, when written, the FIFO is full, the written
value is discarded and the block generates a Freelist Full fault (see Section 4.9.4.2). The
structure of any value written to the FIFO follows the conventions specified for a Transfer
Descriptor Entry (TDE). The structure of the TDE for this particular type of block is described
in Section 4.9.2. When read, the returned value is always zero. The structure of this register is
illustrated in Figure 49:
Draft - for internal distribution only page 97

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
6.3.3 Freelist Fault Register

n the eventuality that usage of the block asserts an fault, this register contains the offending
TDE. The structure of a TDE for this particular type of block is described in Section 4.9.2. The
contents of this register are only valid while the Fault Pending field of the CSR register is
asserted. See Sections 4.6, 4.7.3 and 4.7.4 for a discussion of fault processing. The structure of
this register is illustrated in Figure 50:

6.4 The (PIB) Pending Import Block

The Back-End interface to the PIB consists principally of four registers1, one of which is
reserved for future use. One of the four registers is used for setup and control of the PIB, one
register is an interface to the read port of the PIB’s transaction FIFO and one register contains
the potential fault parameter. The location of these registers on the DCR bus relative to one
another is enumerated in Table 11. The absolute location of these registers is specified as a
block instantiation parameter and is discussed in Section 1.3. For a detailed discussion of the
functionality of the PIB see Section 4.10.

Figure 49 Freelist Register

032

TDE

Figure 50 Freelist Fault Register

032

TDE

1. See also the interrupt interface described in Section 6.5.1.

Table 11 Register offsets for the PIB

Offset1 Name Description

0 PIB_CSR Control and Status Register. See Section 6.4.1

1 IMPORT_PENDING Read port of the block’s transaction FIFO. See Section 6.4.2

2 IMPORT_FAULT Contains the TDE associated with an fault. See Section 6.4.3

3 PIB_RESERVED Must be zero.
page 98 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
6.4.1 Control and Status Register (CSR)

This register manages the configuration and setup of the block. Principally, this implies
establishing the conditions under which the block will assert its Event signal. This signal is
nominally connected to the ISB (see Section 6.5) where it may used to trigger a processor
interrupt. Note: this register provides for selective set and clear of its fields. The low order 16
bits constitute the fields which can be changed and the high order 16 bits are the
corresponding field enables. See Section 1.3.2 for a discussion of these types of fields. The
structure of this register is illustrated in Figure 51:

Where:

Reset: This field is used to reset the corresponding block. This field may only be set. Any
access which attempts to clear this field will be ignored. Asserting (setting) this
field triggers a reset of the block. While the reset is in progress the field remains
set. The value of any other field of the register during this time is indeterminate.
After the reset is complete, the field is cleared. While a reset is in progress any
requests to modify the block’s state are ignored. This includes writing fields of
this register or any other register, as well as any operation which implicitly or
explicitly writes to the block’s FIFOs. The result of reading a a block’s transaction

1. In bytes

Figure 51 PIB CSR register

1

Reset Protocol Core
Event Enable

23 0

Reset
Fault Pending

4

Not-Empty
Almost Empty
Almost Full
Full

Event Triggers
Event Conditions

0123

81216

MBZ

32

Field enables

R/O
Draft - for internal distribution only page 99

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
FIFO while a reset is in progress are indeterminate. A reset flushes all entries
buffered in any of the block’s FIFOs, resets all its DCR registers, and returns all the
block’s internal State Machines to their initial state. Therefore, after reset is
complete:

— all FIFOs are empty

— the Event signal is masked

— a pending fault (if any) is flushed

— the Event Triggers and Event Conditions fields are set to zero

Fault Pending: This field indicates the presence of a fault. If this field is set, a fault is pending.
To dismiss a pending fault this field must be cleared. See Section 4.6 for the
description of a fault.

Reset Protocol core: This field is used to reset the protocol core. In actuality, setting this field
asserts a pulse on the Core_Reset signal of the PEB’s Front-end-Interface (see
Section 5.2.2.11). This field may only be set. Any access which attempts to clear
this field will be ignored.

Event Enable: This field allows the block to assert its Eventsignal whenever the conditions
specified by the Event Triggers field (see below) are true. When this field is set, the
Event signal is enabled. When this field is clear, the signal is masked (disabled). See
Section 4.5 for the description of an event.

Event Triggers: This field enumerates which combination of the four possible conditions of
the block’s transaction FIFO will assert the block’s Event signal (Assuming
events are enabled, see above). In turn, this field is divided into four sub-fields
with the offset of each field corresponding to a specific condition. If a sub-field is
set and the corresponding condition in the transaction FIFO is present, the Event
signal will be asserted. If a field is clear, independent of the state of the
corresponding condition in the transaction FIFO, the Event signal will not be
asserted.See Section 4.5 for the description of an event and its corresponding
signal.

Event Conditions: This field enumerates which combination of the four possible transaction
FIFO conditions are currently asserted. As with the Event Triggers field described
above, this field is divided into four sub-fields with the offset of each field
corresponding to a specific condition. If a sub-field is set, the corresponding
condition is present. If a field is clear, the condition is not present. The values of
this field are independent of the state of the Event Enable field (see above). Note:
This field is Read-Only. See Section 4.5 for the description of an event and its
corresponding signal.

Field enables: The low-order 16 bits of this register are Selective Set and Clear. This field forms
the write enables for those 16 bits. See Section 1.3.2 for an explanation of how this
field is to be used.
page 100 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
6.4.2 Import Pending Register

This register is an interface to the read port of the block’s transaction FIFO. When read, the
returned value corresponds to the entry at the FIFO’s head. The structure of any returned
entry follows the conventions specified for a Transfer Descriptor Entry (TDE). The structure of
the TDE for this particular register is described in Section 4.10.2. If the returned value is four
(4), the FIFO was empty. The structure of this register is illustrated in Figure 52:

6.4.3 Import Fault Register

In the eventuality that usage of the block asserts an fault, this register contains the offending
TDE. The structure of a TDE for this particular type of block is described in Section 4.10.2. The
contents of this register are only valid while the Fault Pending field of the CSR register is
asserted. See Sections 4.6, 4.7.3 and 4.7.4 for a discussion of fault processing. The structure of
this register is illustrated in Figure 53:

6.5 The ISB (Interrupt Summary Block)

The Back-End interface to the ISB consists of four registers. These registers are Read-Only and
simply reflect the current state of the up to 128 Event and Fault signals generated by the
transfer blocks of a system. The location of these registers on the DCR bus relative to one
another is enumerated in Table 12. The absolute location of these registers is specified as a
block instantiation parameter. For a detailed discussion of the functions of the ISB see
Section 4.11.

Figure 52 Import Pending Register

032

TDE

Figure 53 Import Fault Register

032

TDE
Draft - for internal distribution only page 101

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
6.5.1 Event Sources (Low) Register

This register specifies the current state of the Event signals for both PEB and ECB. The register
contains two sixteen bit fields. The low-order field corresponds to the set of Event signals for
the PEB, while the high-order field corresponds to the set of Event signals for the ECB. Each
field is a bit-list, where the value at any given offset corresponds to the state of the Event
signal for the corresponding block. If the value pointed to by the offset is set, the Event signal
for the corresponding block is asserted. If the value pointed to by the offset is clear, the signal
is not asserted. The structure of this register is illustrated in Figure 54:

6.5.2 Event Sources (High) Register

This register specifies the current state of the Event signals for both FLB and PIB. The register
contains two sixteen bit fields. The low-order field corresponds to the set of Event signals for
the FLB, while the high-order field corresponds to the set of Event signals for the PIB. Each
field is a bit-list, where the value at any given offset corresponds to the state of the Event
signal for the corresponding block. If the value pointed to by the offset is set, the Event signal
for the corresponding block is asserted. If the value pointed to by the offset is clear, the signal
is not asserted. The structure of this register is illustrated in Figure 55:

Table 12 Register offsets for the ISB

Offset1

1. In decimal

Name Description

0 EVENT_SRCS_LOW State of Event lines for PEB and ECB

1 EVENT_SRCS_HIGH State of Event lines for FLB and PIB

2 FAULT_SRCS_LOW State of Fault lines for PEB and ECB

3 FAULT_SRCS_HIGH State of Fault lines for FLB and PIB

Figure 54 ISB event register (Low)

Active PEBs

032 16

Active ECBs
page 102 Draft - for internal distribution only

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
6.5.3 Fault Sources (Low) Register

This register specifies the current state of the Fault signals for both PEB and ECB. The register
contains two sixteen bit fields. The low-order field corresponds to the set of Fault signals for
the PEB, while the high-order field corresponds to the set of Fault signals for the ECB. Each
field is a bit-list, where the value at any given offset corresponds to the state of the Fault
signal for the corresponding block. If the value pointed to by the offset is set, the Fault signal
for the corresponding block is asserted. If the value pointed to by the offset is clear, the signal
is not asserted. The structure of this register is illustrated in Figure 56:

6.5.4 Fault Sources (High) Register

This register specifies the current state of the Fault signals for both FLB and PIB. The register
contains two sixteen bit fields. The low-order field corresponds to the set of Fault signals for
the FLB, while the high-order field corresponds to the set of Fault signals for the PIB. Each
field is a bit-list, where the value at any given offset corresponds to the state of the Event
signal for the corresponding block. If the value pointed to by the offset is set, the Fault signal
for the corresponding block is asserted. If the value pointed to by the offset is clear, the signal
is not asserted. The structure of this register is illustrated in Figure 57:

Figure 55 ISB event register (High)

Active FLBs

032 16

Active PIBs

Figure 56 ISB fault register (Low)

Active PEBs

032 16

Active ECBs
Draft - for internal distribution only page 103

Cluster Element Module Design proposal
Chapter 6 The PIC DCR Interface Version/Issue: 0.4/3
Figure 57 ISB fault register (High)

Active FLBs

032 16

Active PIBs
page 104 Draft - for internal distribution only

	Cluster Element Module
	Abstract
	Hardware compatibility
	Intended audience
	Conventions used in this document
	References
	Document Control Sheet
	Document Status Sheet
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Overview
	1.1 Introduction
	1.2 The Memory Subsystem
	1.3 DCR Bus Usage
	1.3.1 Bus Map
	1.3.2 Register Conventions

	Chapter 2 Configuration Memory
	2.1 Introduction
	2.2 Page organization and page buffer
	2.3 Root block
	2.4 File organization
	2.5 DCR Interface
	2.5.1 Transfer Control Register
	2.5.2 Transfer Address Register
	2.5.3 Transfer Data Register

	Chapter 3 Processor Bootstrapping
	3.1 Introduction
	3.2 Bootstrap Block
	3.3 DCR Interface
	3.3.1 Restart Options Register

	Chapter 4 The Packet Interface Core (PIC)
	4.1 Introduction
	4.1.1 Packet model
	4.1.2 The Transfer Model and Transactions
	4.1.3 Building blocks
	4.1.3.1 Transfer Blocks
	4.1.3.2 Interrupt Summary Block (ISB)

	4.1.4 Connecting the blocks

	4.2 The Transaction Descriptor
	4.3 The Transaction Completion Descriptor (TCD)
	4.3.0.1 Invalid payload length
	4.3.0.2 Invalid header address
	4.3.0.3 Invalid payload address
	4.3.0.4 Data under-run

	4.4 Events, Conditions and the Transaction FIFO
	4.4.1 FIFO parameters

	4.5 Events
	4.6 Faults
	4.7 The Pending Export Block
	4.7.1 Parameters
	4.7.2 The PEB’s Transaction FIFO
	4.7.3 Faults triggered by a Protocol Core
	4.7.3.1 Data Pipeline Empty
	4.7.3.2 Status Pipeline Full

	4.7.4 Faults triggered by a Protocol Driver
	4.7.4.1 Invalid Transfer Descriptor
	4.7.4.2 No such ECB
	4.7.4.3 Export FIFO Full

	4.8 The Export Complete Block
	4.8.1 Parameters
	4.8.2 The ECB’s Transaction FIFO
	4.8.3 Faults triggered by a Protocol Core
	4.8.4 Faults triggered by a Protocol Driver

	4.9 The Free-List Block
	4.9.1 Parameters
	4.9.2 The FLB’s Transaction FIFO
	4.9.3 Faults triggered by a Protocol Core
	4.9.4 Faults triggered by a Protocol Driver
	4.9.4.1 Invalid Transfer Descriptor
	4.9.4.2 Freelist Full

	4.10 The Pending Import Block
	4.10.1 Parameters
	4.10.2 The PIB’s Transaction FIFO
	4.10.3 Faults triggered by a Protocol Core
	4.10.3.1 No such FLB
	4.10.3.2 Data Pipeline Full

	4.10.4 Faults triggered by a Protocol Driver

	4.11 The Interrupt Summary Block
	4.11.1 Parameters

	4.12 The Export transaction
	4.12.1 Data structures for a successful export transaction
	4.12.2 Data structures for a failed export transaction

	4.13 The Import transaction
	4.13.1 Data structures for a successful import transaction
	4.13.2 Data structures for a failed import transaction

	4.14 The protocol engine message transaction
	4.14.1 Data structures for a message transaction

	Chapter 5 The PIC Front-End Interface
	5.1 Introduction
	5.1.1 Terminology
	5.1.2 Post-processing and completion status
	5.1.3 What to do if a data or status pipeline is full?

	5.2 Exporting
	5.2.1 Advancing the export pipeline
	5.2.2 PEB Signal Descriptions
	5.2.2.1 Export-Clock
	5.2.2.2 Export-Data Available
	5.2.2.3 Export-Data Start
	5.2.2.4 Export-Advance Data Pipeline
	5.2.2.5 Export-Data Last Line
	5.2.2.6 Export-Data Last Valid Byte
	5.2.2.7 Export-Data
	5.2.2.8 Export-Advance Status Pipeline
	5.2.2.9 Export-Status
	5.2.2.10 Export-Status Full
	5.2.2.11 Export-Core Reset

	5.2.3 Transfer data structure
	5.2.4 Timing examples
	5.2.5 Export Post-processing

	5.3 Importing
	5.3.1 PIB Signal Descriptions
	5.3.1.1 Import-Clock
	5.3.1.2 Import-Freelist
	5.3.1.3 Import-Advance Data Pipeline
	5.3.1.4 Import-Data Last Line
	5.3.1.5 Import-Data Last Valid Byte
	5.3.1.6 Import-Data
	5.3.1.7 Import-Data Pipeline Full
	5.3.1.8 Import-Core Reset

	5.3.2 Transfer data structure
	5.3.3 Timing examples
	5.3.4 Import Post-processing

	Chapter 6 The PIC DCR Interface
	6.1 The PEB (Pending Export Block)
	6.1.1 Control and Status Register (CSR)
	6.1.2 Export Pending Register
	6.1.3 Export Fault Register

	6.2 The ECB (Export Complete Block)
	6.2.1 Control and Status Register (CSR)
	6.2.2 Export Complete Register
	6.2.3 Export Complete Fault Register

	6.3 The FLB (Freelist Block)
	6.3.1 Control and Status Register (CSR)
	6.3.2 Freelist Register
	6.3.3 Freelist Fault Register

	6.4 The (PIB) Pending Import Block
	6.4.1 Control and Status Register (CSR)
	6.4.2 Import Pending Register
	6.4.3 Import Fault Register

	6.5 The ISB (Interrupt Summary Block)
	6.5.1 Event Sources (Low) Register
	6.5.2 Event Sources (High) Register
	6.5.3 Fault Sources (Low) Register
	6.5.4 Fault Sources (High) Register

