

Fermi LAT Data Exploration

Aous Abdo <<u>Aous.Abdo@nrl.navy.mil</u>> National Academy of Sciences & Naval Research Laboratory Washington DC

Overview

- 1. We will learn how to make counts maps with gtbin
 - Overlay 1FGL source catalogues
- 2. Make light curves
- 3. Obtain energy spectra
- 4. Look at the exposure maps

Counts Maps

- Now that we have a file that is ready to be analyzed the first thing we will do is to look at the region that we extracted.
- * This is a good practice in all types of analyses since it gives you an idea about sources in the region and how complex the region is.
- * We will use the Science Tool gtbin to do this.

- * gtbin can be used with the LAT data to:
 - Make raw counts maps
 - Make quick-look light curve
 - Obtain spectra
- * gtbin products should be considered as a first step and to get a rough idea about the source in question.
- This is true since gtbin does <u>NOT</u> take into account things like
 - Exposure correction
 - Instrument response

Counts Maps With gtbin

diamater x Image scale

center of our cmap is the position of our source

We wanted to bin out image in 0.1
 degrees/pixel so we selected (2*10)/0.1 = 200 for the sizes of our axes

* Now we use ds9 to view the counts map file

Overlaying 1FGL Sources

- * One can overlay a number of catalogues on the counts map.
- We will overlay the 1FGL catalogue (gll_psc_v02_ellipses.reg) sources on our image.
- <<u>http://fermi.gsfc.nasa.gov/ssc/data/access/lat/></u>

Fermi LAT Data Exploration

Overlaying 1FGL Sources

- Not many sources in the ROI (~6 sources)
- Relatively uncomplicated region. Will be easier and faster to to run the likelihood analysis

Light Curves With gtbin

- * We will make a quick light curve using gtbin.
- We will look at the light curve of the CTA1 pulsar during the last week of the observation file we downloaded.
- * We will bin the data in 1-day time bins \$ gtbin This is gtbin version ScienceTools-v9r15p2-fssc-2009020 Type of output file (CCUBE|CMAP|LC|PHA1|PHA2) []LC Event data file name[] FT1_gtmktime_292937396-293542196MET.fits Output file name[]FT1_gtmktime_292937396-293542196MET_LC.fits Spacecraft data file name[]L100422151847E0D2F37E30_SC00.fits Algorithm for defining time bins (FILE|LIN|SNR) []LIN Start value for first time bin in MET[] 292937396 Stop value for last time bin in MET[]293542196 Width of linearly uniform time bins in seconds[]86400

seconds in 1 day

Light Curves With gtbin

* The output file has the extension "RATE" which gives counts as a function of time

 To make a plot of the light curve click on the "All" button under the RATE extension

TIME goes on the x-axis

COUNTS on the y

And ERROR on the y-axis error

remember this does not have exposure correction and instrument response

Energy Spectra With gtbin

- We will look at the spectra of CTA1 using gtbin
- stbin can produce:
 - Energy spectrum binned in energy (PHA1)
 - Energy spectra binned in energy for a series of time ranges (PHA2)

Energy Spectra with gtbin

- ✤ Output file:
- SPECTRUM extension:
 - CHANNEL : Energy bin number
 - COUNTS: # of photons in that bin
 - STAT_ERR: statistical error
- EBOUNDS extension:
 - Minimum and maximum energy for energy bin

000	X fv: Summar	ry of FT1_gtml	ctime_29293739	96-29	3542196ME	T_PHA1.fits in	n /Ana	alysis/abdo	/tutorial/	
File Edit Tools Help										
Index	Extension Type		Din	Dimension			View			
0 []	Primary Image		0		Header	Image		Table		
	SPECTRUM Binar		3 cols X 20 rows			Header	Hist	Plot. A	Select	
2	EBOUNDS Binar		3 cols X 20 rows							
	CTL CTL		2 cole ¥ 170 mure		Health	HIST	PIOL	Select		
- 3	dir	Dinary	2 0015	~ 1/0	rows	Header	Hist	Plot A	Select	
○ ○ ○ X fv: Binary Table of FT1_gtmkting 2929										7
File Edit Tools Help File Edit Tools H										
	CHANNEL	COUNTS	STAT ERR			CHANNEL		E MIN	E MAX	
Select	1	J	E		Select	1	E		E	
		Counts			🗆 All			keV	keV	
Invert	Modify	Modify	Modify		Invert	Modify		Modify	Modify	-
1	1	320	1.788854E+01	ΠA	1	1	1.0	00000E+05	1.492300E+0	5
2	2	748	2.734959E+01		2	2	1.492300E+05		2.2269582+0	5
3	3	941	3.067572£+01		3	3	2.226958E+05		3.323290E+0	5
4	4	808	2.842534E+01		4	4	3.3	23290E+05	4.959344E+0	5
5	5	592	2.433105 €+ 01		5	5	4.9	59344E+05	7.400828E+0	5
6	6	471	2.170253€+01		6	6	7.4	00828E+05	1.104425E+0	6
7	7	293	1.711724E+01		7	7	1.1	04425E+06	1.648134E+0	6
8	8	216	1.469694E+01		8	8	1.6	48134E+06	2.459510E+0	6
9	9	98	9.899495E+00		9	9	2.4	59510E+06	3.670325E+0	6
10	10	54	7.348469E+00		10	10	3.6	70325E+06	5.477226E+0	6
11	11	24	4.898980E+00		11	11	5.4	77226E+06	8.173662E+0	6
12	12	13	3.605551E+00		12	12	8.1	73662E+06	1.219755E+0	7
13	13	5	2.397916E+00		13	13	1.2	19755E+07	1.820241E+0	7
14	14	4	2.179450E+00		14	14	1.8	20241E+07	2.716345E+0	7
15	15	1	1.322876E+00		15	15	2.7	16345E+07	4.053600€+0	7
16	16	2	1.658312E+00		16	16	4.0	53600E+07	6.049187E+0	7
17	17	1	1.322876E+00		17	17	6.0	49187E+07	9.027200E+0	7
18	18	0	8.660254E-01		18	18	9.0	27200E+07	1.347129E+0	8
19	19	0	8.660254E-01		19	19	1.3	47129E+08	2.010320E+0	8
20	20	0	8.660254E-01		20	20	2.0	10320E+08	3.000000E+0	8
Go to:	Edit cell:				Go to:		Edit cell:			

Energy Spectra with gtbin

- To make a plot of the energy spectrum use the plot button under the SPECTRUM extension
- CHANNEL goes on the x-axis
- COUNTS on the y
- And STAT_ERR on the y-axis error

Energy Spectra with gtbin

The spectrum measured takes into account all the sources in the 10 degree region.

Looking At The Exposure

- An exposure map simply shows how Fermi viewed the sky within some time interval.
- * For this task we use:
 - gtltcube: This tool creates a livetime* cube, which is a HealPix table, covering the full sky, of the integrated livetime as a function of inclination with respect to the LAT z-axis.
 - gtexpcube: Generates exposure maps

*Livetime: The accumulated time during which the LAT is actively taking event data

* We will thus look at the exposure for the last week of the observation file we downloaded. (One can use gtltsum to add exposure cubes. More on this to come)

```
$ gtltcube
Event data file[] FT1_gtmktime_292937396-293542196MET.fits
Spacecraft data file[] L100422151847E0D2F37E30_SC00.fits
Output file[] expCube_292937396-293542196MET.fits
Step size in cos(theta) (0.:1.) []0.025
Pixel size (degrees)[0.5] 1
Working on file
L100422151847E0D2F37E30_SC00.fits.....!
```

gtexpcube

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u></u>
<pre>\$ gtexpcube This is gtexpcube version N/A Exposure cube input file name[expCube_292937396-293542196MET.fits] FT1 events input file name[FT1_gtmktime_292937396-293542196MET.fits] Count map input file name (NONE for manual input of map geometry)[None] Exposure map output file name[exposure_292937396-293542196MET.fits] Response function to use, e.g. HANDOFF, DCIF/DCIB, G25F/G25B, TestF/TestB[P6 Size of the X axis in pixels (leave at 1 for auto full sky (1:) [1] Size of the Y axis in pixels (leave at 1 to copy nxpix or auto full sky) (1: Image scale (in degrees/pixel)[0.5] Coordinate system (CEL - celestial, GAL -galactic) (CEL[GAL) [CEL] gal First coordinate of image center in degrees (RA or galactic 1)[] 0 Second coordinate of image center in degrees (DEC or galactic b)[] 0 Rotation angle of image axis, in degrees[0] Projection method (AIT ARC CAR ZEA GES MER NCP SIN STG TAN) [AIT] Start value for first energy bin[100] Stop value for last energy bin[100] Number of logarithmically uniform energy bins[4] How are energy layers computed from count map ebounds? (CENTER EDGE) [CENTER Creating an Exposure object from file expCube_292937396-293542196MET.fits Using Aeff(s)</pre>	IRFs: select p6_V3_DIFFUSE v3_DIFFUSE ) [1] the whole sky in Galactic coordinate
Combining exposure from the response function(s), specified by "P6_V3_DIFFUS P6_V3_DIFFUSE::FRONT D6_V3_DIFFUSE::PNCK	Е":
Cutoff used: 6.12303e-17 Creating an Image, will write to file exposure_292937396-293542196MET.fits	
Generating layer 0 at energy 420.041 MeV Aeff(0): 5305.39 cm ² Generating layer 1 at energy 3108.65 MeV Aeff(0): 7216.35 cm ² Generating layer 2 at energy 23006.6 MeV Aeff(0): 7986.31 cm ² Generating layer 3 at energy 170268 MeV Aeff(0): 7890.73 cm ²	



#### Exposure Maps

- * gtexpmap produced four exposure maps for the energies shown.
- * The units of these maps are cm² s



# Adding Exposure Cubes

- Generating exposure cubes with gtltcube can take a lot of time.
- * To over come this, we:
  - Split the event data file into smaller time bins. On the order of 4-7 days is fine.
  - run gtltcube on each of these files separately on the cluster to generated individual exposure cubes.
  - use gtltsum to add up all these cubes.
  - Note that gtltcube adds two files at a time so one would need to script the addition of large number of cubes.

```
$ gtltsum
Livetime cube 1 or list of files[] expCube0.fits
Livetime cube 2[none] expCube1.fits
Output file [] : expCube.fits
```