Thoughts on MaDPhoX Tracker Optimization

Tim Nelson - SLAC

MaDPhoX Tracking Meeting December 18, 2009

Critical Performance Issues

Acceptance and efficiency/fake rate

- Optimal placement of detector planes vs. radiation environment
- Rate of noise hits/efficiency (vs. radiation environment)
- Mass resolution

🔒 Material

- Vertex resolution
 - 🔒 Material
 - Optimal placement of detector planes vs. radiation environment

ABCD3TA

🔒 0.8um DMILL, binary readout

- ENC = 600 + 65*C e⁻/pF at nominal input current (250 uA)
 - SCT strips are ~15pF for ~1550e⁻ ENC. 280um silicon results in MIP deposit of 21.5ke⁻ for S/N = 14.0
 - RunIIb strips will be 12-14pF before irradiation. 320um silicon results in MIP deposit of 24.9ke⁻ for S/N = 17.8
- May be able to reduce noise slope by increasing input current at the cost higher heat load.

Feedback Current = 21A 1200 1000 800 600 Input Current = 250uA (nominal) Input Current = 450uA Slope = 47e/pF 400 ■ Input Current = 550uA Slope = 44e/pF ▲ Input Current = 650uA Slope = 43e/pF 200 0 5 10 15 25 20 Input Capacitance [pF]

But these are SCT sensors, we have additional headroom, right?

 \oplus

 \oplus

For Runllb Sensors

- In SCT sensors, most tracks near normal incidence deposit all of their charge on a single strip.
 - Ensures good efficiency
 - Hell matched to binary readout.
- In RunIIb sensors the majority tracks, including those at normal incidence, deposit charge on multiple strips.
 - - Optimizes resolution for "analog" readout.
 - For binary readout, this does nothing but spread out and discard signal (~15% of signal on intermediate strips goes to backplane).

Charge Sharing Eats Into "Safe Zone"

un-irradiated

In order to ensure good efficiency, threshold will have to be much lower.

Thinning sensors makes things worse

 \oplus

 \oplus

Efficiency Comments and Material

- Binary readout makes this a very tricky business. Parameter tuning must be perfect. One cannot run with low thresholds and then come back later to re-cluster more carefully. Once the data is taken, it's done.
- Do we need 99% efficiency?
 - Imagine 4 stereo planes with all needed for good purity: $(0.99)^8 = 92\%$ tracking efficiency, $(0.92)^3 = 79\%$ reconstruction efficiency.

The option to high efficiency is redundancy, AKA here as "extra material".

Is There an Option?

CMS APV25

- Used throughout CMS tracker: (~75K chips total)
- 0.25um CMOS improves noise performance
- Analog readout also improves single-hit resolution, especially for alternating-strip readout
- dead-time limitation of peak mode is adequate for most, if not all of 120 our acceptance. 00 sounds 80

80

40

ADC - 60

Frequency

$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

APV25 Availability and DAQ

- 100% perfect APV25 available at CERN for 28CHF (~\$27) each.
- For an 8-plane tracker, becomes a \$10K-\$12K item.
- May be more flexible in terms of rest of DAQ. Only other item at detector is analog optical transmitter. Digitization can take place well outside tracking volume.

Summary 1

The ABCD3TA will work adequately with fresh RunIIb silicon

- Resolution will be (30-60 microns)/sqrt(12) = 9-17um depending upon noise, but MS still dominates.
- Binary readout allows one shot: once you've set it, you can forget it!
- Combinations of other factors will create problems:
 - increased noise and signal loss from high radiation doses
 - thinned silicon
- The APV25 addresses these concerns at a cost.

Radiation Tolerance

Some misunderstandings regarding radiation tolerance have crept into the design. It's a tricky (and evolving) business!

- Two critical details:
 - Misunderstanding of sensor specifications
 - A Misunderstanding of corrections to NIEL scaling hypothesis for electrons
- How far can these sensors be pushed?
- What kind of sensors could we push further?

Limitations of Runllb Sensors

- Sensor specification calls out maximum operating voltage of 350V
- Correcting V_{depl} for thickness (α t²), sensors should be fully depleted up to $\Phi_{eq} = 6 \times 10^{13}$ cm⁻²
- Assuming NIEL scaling, this is equivalent to 7.2×10¹⁴ cm⁻² 1 GeV e⁻
- However, studies with 900 MeV electrons have shown that NIEL scaling is broken for electrons: damage is ~1/3 of expected value at fluence
- Surface effects negligible (overcome at 20-30V bias)
- Actual equivalent dose: ~2.2×10¹⁵ cm⁻² 1 GeV e⁻ (5.5× previous assumption)

Stretching the Limits

- Runllb sensors were (I believe) prototyped by HPK with same design features as Layer 00 sensors.
 - Many of these sensors are likely capable of operation at 1000V. If so, finding them is easy.
 - 1000V operation gets you to 5×10¹⁵ 1 GeV e⁻
- If under-depleted, depletion depth α sqrt(V_{bias}). Each factor of 2 in fluence costs you almost same factor in signal once V_{depl} > V_{bias}
- Having extra S/N to burn = extra radiation tolerance

Breaking the Limit

- Defect engineering: oxygenated silicon reduces slope after inversion
 - Increases radiation tolerance by approximately a factor of 3.
- Thinner: lowers depletion voltage.
 - Same situation as underdepletion: each factor of two thinner buys you slightly more than factor of two in fluence ... but without the material!

Resolution Limitations

From John's estimates:

- $\sigma_{\rm d0} = 22 \oplus 66/p \ \mu {\rm m}$
- Am/m = 0.0035 ⊕ 0.008

Term from angular resolution at vertex.

N.B. Refitting tracks with vertex constraint should improve this somewhat (on order of 30-40% for three tracks)

Both of these problems are attacked by thinning upstream of the second measurement.

15

Thinned Layer00 Sensors

CDF Layer 00 used radiation-tolerant sensors

- 300 micron <100> p on n silicon
- 50(25) micron readout(sense) pitch
- Micron produced oxygenated sensors 1/12 of the detector uses this silicon
- Purdue used masks (Gino Bolla) for ILC R&D on fabrication of sensors on thinned wafers
 - 150um, 200um, and 300um thick sensors procured from Micron
 - Preliminary results were very encouraging
 - Sensor parameters as expected
 - Charge collection with SVX4 as expected
- These sensors (6.4mm wide, 78mm long) could be great in the first plane pair. Under discussion...

		1			,
	I_{leak}	C_C	C_{IS}	R_{Is}	R_{bias}
		pF/cm	pF/cm	GΩ	$\mathrm{M}\Omega$
Specs	Grade	> 10	<1.2	> 1	1.5 ± 0.5
					<10 % variation
$300 \mu m$	3 Grade A	> 15	< 0.9	> 1	0.5 ± 0.2
	2 grade B				<5~% variation
$200\mu m$	3 Grade A	> 20	< 0.9	> 10	1.8 ± 0.10
	2 Grade B				<10 % variation
150µm	7 Grade A	>15	< 0.9 pF/cm	> 10	1.8 ± 0.10
	0 Grade B				<10 % variation

And What About Cooling?

Radiation damage increases bulk current

- $larconstant I \alpha$ (thickness)
- $I \alpha$ log(temperature): doubles every 7C
- Sensors generate heat according to P=IV, factors cancel so that:
 - at $V_{dep} = 350V$ fluence (T=-8C): 1.6mW/cm²
 - at $V_{dep} = 1000V$ fluence (T=-8C): 11mW/cm²
- For Runllb sensors at 350V, cooling from edge of sensor is sufficient. At 1000V cooling at edge may be sufficient depending upon spatial distribution of radiation damage
- Less clear for thinned silicon. Very thin layer of unidirectional CF may be necessary.

Summary 2

- ♣ We clearly have 5× more radiation tolerance than previously assumed.
- With careful selection of RunIIb sensors, we should have of 11× more radiation tolerance than previously assumed.
- With a lower-noise chip we might buy another 1.5× 2× more radiation tolerance by simply running under-depleted at the end.
- An ideal (but still realistic) setup might be 150 um oxygenated silicon, which would result in radiation tolerance to 3×10¹⁶ 1 GeV e⁻ (66× previous assumption!!) This clearly requires a different readout chip.
- How far we push has consequences for cooling design.

Conclusions

The APV25 is an attractive option here

- more headroom in S/N
- analog readout safer with rapidly changing operating point of irradiated sensors
- location of modes, chip-by-chip, depending upon occupancy
- better ultimate resolution with intermediate strip
- 👃 it's not free
- We can design more aggressively w.r.t. radiation tolerance
 - Minor changes can deliver significant improvement
 - Working hard on the first plane-pair can deliver major improvements in mass resolution and radiation tolerance.
- Cooling is in a regime that allows for creative, low-mass solutions