High-energy electron irradiation of different silicon materials

3rd RD50-Workshop on Radiation hard semiconductor devices for very high luminosity colliders, CERN 3-5 November 2003

<u>D. Contarato¹</u>, L. Bosisio^{2,3}, M. Ciacchi², G. D'Auria⁴,

S. Dittongo^{2,3}, E. Fretwurst¹, G. Lindström¹

¹ University of Hamburg, Germany
 ² INFN, Sezione di Trieste, Italy
 ³ University of Trieste, Italy
 ⁴ Sincrotrone Trieste S.C.p.A., Trieste, Italy

Outline

- Introduction & motivation
- Devices and experimental conditions
- Experimental results
 - Effective dopant concentration
 - Leakage current
 - Charge collection efficiency
 - Annealing effects
- Comparison with low-energy electrons
- Conclusions

Introduction: why high-energy electrons?

- In last years, many studies on the radiation hardness of silicon detectors (from different substrates) against different particle types (charged hadrons, neutrons and γ rays)
- By contrast, very few contributions devoted to damage induced by highenergy (GeV) electrons, energy range of interest for future linear colliders
- Previous irradiation with 900 MeV electrons, up to $\Phi \sim 4.5 \times 10^{14}$ e/cm²: bulk type inversion of high-resistivity standard and oxygenated FZ devices. No significant effect of oxygen diffusion up to this fluence.
- New experiment: higher fluences and wider range of substrate materials (standard and oxygenated float-zone, Czochralski and epitaxial silicon)
- Correlation (preliminary) of damage induced by low- (15 MeV) and high-(900 MeV) energy electrons, to be compared also with results from Co-60 irradiation

Tested devices

 $p^{+}/n^{-}/n^{+}$ diodes fabricated on different silicon substrates (thickness ~300 μ m), provided with a 100 μ m wide guard-ring, surronded by floating rings

Standard (FZ) and oxygenated (DOFZ) float-zone devices by ITC-irst (Trento, Italy)

- fabricated on Topsil (111) and (100) substrates, resistivity~10-20 k Ω ·cm
- DOFZ: 12 hour oxidation @ 1150°C + 36 hour diffusion in N₂ @ 1150°C, $[O] \sim 1-3 \times 10^{17} \text{ cm}^{-3}$

FZ and DOFZ devices by CiS (Erfurt, Germany)

- fabricated on Wacker (111) substrates, resistivity~3-4 k Ω ·cm
- DOFZ: oxygen diffusion in N_2 environment for 72 hours @ 1150°C, [O] ~ 1.2x10¹⁷ cm⁻³

Czochralski (CZ) devices by CiS

 fabricated on Sumitomo (100) substrates, resistivity~1.2 kΩ·cm, thermal-donor killed (2 hours @ 800°C + fast cooling to RT)

Epitaxial (EPI) devices by CiS

 50 µm thick epitaxial layer (resistivity~50 Ω·cm) grown by ITME (Warszawa, Poland) on 300 µm thick, low resistivity (~0.01 Ω·cm) Czochralski (111) substrate

Irradiations

- 900 MeV electron beam of the LINAC injector at Elettra (Trieste, Italy)
- fluence measured by a toroidal coil coaxial with beam
- devices kept unbiased during irradiation, at room temperature (~25°C)

step	Fluence (e/cm ²)				
1	$(1.17\pm0.04\pm0.04)$ x10 ¹²				
2	$(1.55\pm0.005\pm0.05)$ x10 ¹³				
3	(4.86±0.03±0.17)x10 ¹³				
4	$(8.41\pm0.08\pm0.28)$ x10 ¹³				
5	$(2.71\pm0.01\pm0.10)$ x10 ¹⁴				
6	$(5.25\pm0.02\pm0.18)$ x10 ¹⁴				
7	(9.20±0.05±0.31)x10 ¹⁴				
8	$(1.40\pm0.003\pm0.05)$ x10 ¹⁵				

Measurements

- irradiated devices electrically characterized by standard I-V and C-V measurements
- C-V measurements @ 10 kHz
- currents normalized to 20°C
- isothermal annealing cycles up to a few 10000 min @ 80°C on the devices irradiated at the two highest fluences

Effective dopant concentration: FZ and DOFZ

- Measurements performed after annealing for 8 min @ 80°C. Type inversion at: $\rightarrow \Phi \sim 1.5 \times 10^{14} \text{ e/cm}^2$ for ITC-irst devices $\Rightarrow \Phi \sim 2 \times 10^{14} \text{ e/cm}^2$ for CiS devices (higher initial dening)
 - $\rightarrow \Phi \sim 3 \times 10^{14} \text{ e/cm}^2$ for CiS devices (higher initial doping)
- Post inversion slopes (β values, lower for DOFZ devices) FZ (IRST) ~ 1.5x10⁻³ cm⁻¹
 FZ (CiS) ~ 1.9x10⁻³ cm⁻¹
 DOFZ (IRST) ~ 0.9x10⁻³ cm⁻¹
 DOFZ (CiS) ~ 0.7x10⁻³ cm⁻¹
- differences between IRST and CiS devices probably due to different starting materials and oxygenation procedures

Effective dopant concentration: EPI and CZ

• samples used for various irradiations have non negligibly differing values of N_{eff} . Normalization: $N_{eff,norm} = [N_{eff}(after) - N_{eff}(pre)] + \langle N_{eff}(pre) \rangle$

- type inversion not observed
 - the pre-irradiation N_{eff} is higher than for FZ substrates
 - high oxygen concentration: shallow donors generation
- EPI: small variations of N_{eff} (comparable with measurement uncertainty)
- CZ: trend appears ~linear with fluence (slope~-1.5x10⁻³ cm⁻¹). A simple extrapolation leads to eventual type inversion at Φ ~3x10¹⁵ e/cm²

Leakage current and damage constant

Leakage current density after 8 min @ 80°C 3x10-3 EPI Set 1 EPI Set 2 C7 FZ-CiS € 2x10⁻³-E (A) E (A) DOF7-CiS DOFZ(111)-IRST FZ(111)-IRST FZ(100)-IRST 0 5.0×10^{14} 1.0×10^{15} 1.5×10^{15} 0 Electron fluence (e/cm^2) Theoretical hardness factor (asymptotic value):

• the leakage current density increase does not depend on substrate material (as observed after hadron irradiations)

• estimation of damage constant α from slope of the linear fit:

 α = 1.35x10⁻¹⁸ A/cm

κ_{theo}=NIEL(900 MeV e⁻)/NIEL(1 MeV n)= 8.1x10⁻² [Summers et al., IEEE TNS 40(6), 1993]

• Experimental hardness factor: $\kappa_{exp} = \alpha(900 \text{ MeV e})/\alpha(1 \text{ MeV n}) = 3.4 \times 10^{-2}$

 $\rightarrow \kappa_{theo}/\kappa_{exp}=2.4$: the NIEL scaling hypothesis seems not adequate when comparing electrons to hadrons

Charge collection efficiency

- measured with the Transient Current Technique (TCT) on samples annealed for 8 minutes @ 80°C (all devices by CiS)
- charge injection from a collimated source of α particles (²⁴⁴Cm)
- bias voltage \geq 150 V for EPI devices, \geq 300 V for CZ, FZ and DOFZ devices
- CCE defined as the ratio between charge induced in irradiated device and charge induced in non-irradiated device

• The decrease of CCE at the highest fluences is of 1-3%, more pronounced for FZ and DOFZ devices

Annealing of the leakage current

• The evolution of the leakage current vs. annealing time is proportional to the time evolution of the damage constant α :

3rd RD50 Workshop CERN, 3-5 November 2003

Annealing of N_{eff}: CZ and EPI

- EPI devices (non-inverted) show an increase of effective donor concentration with time, then a decreasing trend starts at (very) long annealing times. Variations anyway in the order of a few %.
- CZ devices (non-inverted) show an atypical behavior, observed also after hadron irradiation (see talk E. Fretwurst). Possible reasons... under investigation!

Annealing of N_{eff}: FZ and DOFZ

- FZ and DOFZ devices (inverted) reach a minimum in the effective acceptor concentration after ~10 minutes (beneficial annealing), followed by an increase (reverse annealing)
- Higher effect in FZ devices, more pronounced for CiS devices
- Measurements performed after 24 hours @ RT (for CiS devices) show bistable damage effect in FZ but not in DOFZ devices

Parametrization of N_{eff} annealing (FZ)

FZ from CiS

stable damage short-term annealing

$$|N_{eff}(t)| \neq N_0 + N_1 \cdot exp\left(\frac{-t}{\tau_1}\right) + N_{long}(t)$$

 $N_{long,I}(t) = N_2 \cdot (1 - exp(-t/\tau_2))$ 1st order process
 $N_{long,II}(t) = N_3 \cdot \left(1 - \frac{1}{1 + t/\tau_3}\right)$ 2nd order process

$\Phi_{el} [1/cm^3]$	N ₀ [10 ¹² /cm ³]	N ₁ [10 ¹² /cm ³]	τ ₁ [min]	N ₂ [10 ¹² /cm ³]	τ ₂ [min]	$N_3[10^{12}/cm^3]$	τ ₃ [min]
9.2·10 ¹⁴	0.70±0.04	0.19±0.21	1.8±2.8	1.35±0.05	274±32		
9.2 ·10 ¹⁴	0.66±0.07	0.21±0.18	2.7±4.1			1.93±0.08	280±49
1.4 ·10 ¹⁵	1.5±0.06	0.34±0.15	2.8±2.3	2.23±0.07	232±20		
1.4 ·10 ¹⁵	1.45±0.11	0.37 ±0.19	3.6±3.8			3.02±0.11	254±40

• Data from measurements soon after annealing well described by 2nd order process, while data measured after 24 hours (@ RT) are better described by 1st order process

• Stable damage component estimation consistent with results after 15 MeV e⁻ and 23 GeV p⁺ irradiations

Comparison with 15 MeV electrons

- Irradiation performed in Stockholm on FZ and DOFZ devices from CiS; two fluences only available
- Type inversion not observed (checked with field profile after TCT measurements). Fluences too small?
- Annealing of N_{eff}: estimation of stable damage component is consistent
- Next step: correlation with results from Co-60 irradiation

Conclusions

• Effective dopant concentration N_{eff}:

→ FZ and DOFZ substrates: type inversion observed; beneficial effect of oxygen diffusion. Standard parametrization for annealing behavior
 → EPI and CZ substrates: type inversion not observed (to be checked at higher fluences for CZ). Annealing behavior: small effect for EPI, significant but atypical for CZ

- Leakage current: no difference is observed among different materials, as after hadron irradiation. Standard parametrization for annealing behavior
- CCE: very small reduction (1-3%) observed at the highest fluence
- Preliminary comparison with other irradiations of the same substrates gives consistent results

