Deciding Upon Readout Option for MaDPhoX

Tim Nelson - SLAC

MaDPhoX Tracking Meeting February 12, 2010

Comparing Readout Chips

Before irradiation it is simple:

- noise characteristics of chips
- 🔒 digital vs. analog readout

Performance after Irradiation

- Silicon damage is the primary concern
 - Some effects are local and impact only part of a strip, others impact the entire strip
- Some readout chips may receive significant radiation doses

Radiation Effects in Silicon

- Increased interstrip capacitance
 - before: 1.2 pf/cm
 - @2E14 NEQ: 1.6 pf/cm (looking for 1E15)
- Trapping decreases charge collection
 - 🔒 before: no charge loss
 - @1E15 NEQ: ~20% loss per 100um drift
- Charge loss from underdepletion
 - before: fully depleted
 - After: covered in detail in previous talk.

h

 \oplus

Radiation Effects in Readout Chip

Simulation

Changes to org.lcsim

- New readout chip BasicReadoutChip
 - thresholds as multiples of RMS noise: easy to simulate optimized readout
 - simulates generic ADC via two settable parameters:
 - hbits (number of bits resolution)
 - dynamic_range (in fC)
 - binary readout (1 bit) is handled as a special case
- Change to CDFSiSim to simulate charge trapping
 - Can set fraction of charge loss per 100 microns drift
 - Depth dependent trapping is fully simulated

Suggested Test Points

Before irradiation

- Silicon: 1.2 pf/cm, full charge collection
- ♣ ABCD3TA: 600+65*C e- ENC
- APV25: 400+60*C e- ENC (deconvolution mode)
- Irradiated silicon @1E15 NEQ, fully depleted
 - Silicon: 1.6 pf/cm, 20% / 100um drift charge trapping
 - ABCD3TA: 600+65*C e- ENC
 - APV25: 400+60*C e- ENC (deconvolution mode)
- Irradiated silicon @1E15 NEQ, fully depleted, irradiated chip @2E14
 - Silicon: 1.6 pf/cm, 20% / 100um drift charge trapping
 - ♣ ABCD3TA: 1100+65*C e- ENC
 - APV25: 400+60*C e- ENC (deconvolution mode)

Summary

By testing a few cases we can get an idea where we stand.

- The code is there. The amount of new code is very small so I don't believe there will be a long debugging cycle.
- Once we have checked these scenarios, we can decide how hard we need to look at these issues.
- Beyond these, we should probably look at what happens with thinner silicon.
- I will be in touch with Matt to get him up and running.