APV25 S1 Low T^o Measurements

Outline:

- Recap of July 2001 Results
- Testing Setup
- Transistor Parameters
- ADC Input
- Low Gain Results
- High Gain Results
- Comments

Recap of July 2001 Results

- Following trends occur for a drop in temperature:
 - Baseline increases ⇒ lower baseline by increasing VPSP
 - Gain increases
 - Noise decreases
 - Pulse shape changes ⇒ tune by changing ISHA and VFS
 - Calibrate pulse changes
 - Current consumption increases
 ⇒ lower consumption by decreasing bias register settings for chip currents (IPRE, IPCASC, IPSF, ISHA, ISSF, IPSP, IMUXIN)
- Dependence of noise on temperature:
 - Expected 16% decrease in noise for a 54°C drop in temperature.
 - Results showed 8% decrease in noise.
- Junction temperature unknown.

Testing Setup

- APV25 Chip placed in Environmental Chamber.
- Testing range: $-30^{\circ}C \le T_{chamber} \le 40^{\circ}C.$ $-13^{\circ}C \le T_{chip} \le 58^{\circ}C.$
- Pulse shape tuning in Peak mode determines values of ISHA and VFS to be used for each step in temperature.
- VPSP changed to obtain a constant baseline corresponding to roughly ¼ of the full APV output frame.

 ΔT between two methods = 10°C

Transistor Parameters

- Threshold voltage, 1mV/K variation
- Mobility..... $\mu_n(T) = \mu_n(T_{nom}) \left(\frac{T}{T_{nom}}\right)^X$
- **Transconductance...** $g_m \propto \mathbf{m}_n(T)$

$$S_V(T) = S_V(T_{nom}) \sqrt{T^{1-X} \times T_{nom}^{X-1}}$$

• X = -0.86 from g_m vs T^o data.

ADC Input

- The ADC input range is $0 \rightarrow 2V$.
- The output from the APV is ~ 500mV. It is further amplified before being digitised by the ADC.

Two possibilities:

Low Gain: ~4

- Whole output from APV is digitised, digital header + analogue signal.
- Noise level is around 1 ADC unit in Peak mode and 1.7 ADC units in Decon mode.

 \Rightarrow digitisation noise is significant and has to be subtracted in quadrature from total noise.

High Gain: ~17

- Only analogue signal from APV output frame is fully digitised.
- Saturation affects the first few channels in the analogue signal.
- Noise level is around 3.5 ADC units in Peak mode and 6 ADC units in Decon mode.
 - \Rightarrow digitisation noise is no longer significant.

Digitisation Noise

Low Gain Results

High Gain Results

- Prediction: $\Delta S_v = 20\%$
- Results: $\Delta S_v = 19.5\%$

Peak Mode

• Results: $\Delta S_v = 12.2\%$

Comments

- T_{junction} > T_{chip}
 ⇒ taking this into account would lead to closer match between predictions and results.
- Deconvolution and peak mode data show some differences, ∆S_v(peak) < ∆S_v(decon) ⇒ Need more data to confirm this.
- APV25 operated at low temperature ⇒ Lower noise.
- Bias register settings have to be carefully chosen, especially ISHA and VFS which determine the pulse shape and VPSP which determines the analogue signal baseline.