

- Wafer Probing Set-Up
- Test Summary
- Current Status
- Results
- Summary

Wafer Probing

- Set-Up:
 - PC running LabVIEW software
 - VME Crate containing:
 - SEQSI sequencer
 - VI²C card
 - 8-bit FADC
 - RS232 interface b/w PC and Micromanipulator probe station
- Wafer probing:
 - 396 complete APV25 sites per wafer
 - ~10 hours testing time per wafer
 - Results archived on local database
 - 'Wafer map' summary and cutting template

Test Summary

- Basic digital functionality
 - Read & write to all registers
 - Check for stuck bits
 - Chip addressing
 - Correct data frame header/address
 - Random triggers
- Power supply currents
 - Check $I_{DD} \& I_{SS}$ during operation
- Channel pedestals and calibration
 - Adjustable analogue baseline
 - Check channel pedestals
 - Pulse shape and gain for all channels
- Pipeline
 - Check pipeline pedestals
 - Correct pipeline column address

- Voltage Stressing
 - Reduces infant mortality rate
 - Dynamic Voltage Stress:
 - APV operation @ $1.5 \times V_{DD}$
 - Stress duration ~5 s
 - Enhanced Voltage Stress:
 - Additional bump to 2.0 x V_{DD}
 - Stress duration = 1000 ms
 - (Burn-in not recommended)
- Multi mode
 - Measure pulse shape whilst operating APV in multi mode
- FIFO
 - Check all 30 FIFO locations for stuck bits
- Muxgain
 - Check gain adjustment at multiplexer stage

Current Status

- 'Final system' now in place
 - Software modifications:
 - Probe station control
 - New tests
 - Hardware modifications:
 - New probe card
 - Voltage stress testing
 - Outstanding modifications:
 - Temperature measurement
- 9 wafers probed (3564 die)
 - **2667 die passed Þ yield** = **75%** (70, 77, 79, 75, 76, 73, 77, 80, 66%)
 - 1 wafer showed surface damage (scratching) on delivery
 - 'Final system' used to probe last 6 wafers. Results from KGD to follow...

- Wafer cutting
 - 4 wafers cut (MinTech)
 - KGD from 1st cut wafer reprobed
 - 3 failures from 271 KGD
 - Failures are due to cutting damage
- Wafer reprobing
 - Check on reproducibility of results
 - 1 wafer reprobed
 - 9 discrepancies from 396 sites
 - Due to poor contact \rightarrow reprobe on-wafer
 - Screening is effective!
 - Bad die not escaping net

Supply Currents

- Operational chip configuration
 - Deconvolution mode
 - Raised baseline
 - Default I²C bias values
- Cuts on supply currents: $70 < I_{DD} < 100 \text{ mA}$ $120 < I_{SS} < 170 \text{ mA}$
- Measured supply currents: $I_{DD} = 87.3 \pm 2.4 \text{ mA}$ $I_{SS} = 139.0 \pm 2.7 \text{ mA}$

Channel Pedestals

11th July 2001

Channel Noise

- ENC conversion
 - No external signal generation for calibration, can only approximate...
 - Digital header range ≈ 8 mips (± 20%)
 ≈ 240 bits (± 5%)
 - 1 mip ≈ 25000e

 $\Rightarrow 1 \text{ mip} \approx 30 \text{ ADC counts} \\ \Rightarrow 1 \text{ ADC count} \approx 830 \text{e}$

Channel noise (deconvolution mode):
 = 0.67 ± 0.05 [ADC counts]
 ≈ 560e
 (cf. 430e measured with calibrated set-up)

Pulse Shapes and Gain

Pulse Shapes and Gain (2)

Summary

- 'Final' probing set-up in place ready for 50 wafer order
- Excellent yield: 75% (2667 KGD)
 - APV25S1 performs excellently
 - Good uniformity between chips and wafers
- Results 'black or white' no 'grey area'
 - Die either good or not
 - Loose cuts appear to screen effectively
 - ~ 50% of failures are digital

- Wafer cutting
 - ~ 1% die failed due to cutting damage (3/271)
- Wafer reprobing
 - Reproducible results
 - Screening is effective

Pulse Shapes and Gain (Peak)

