Results from APV25 wafer testing

- Wafer Probing Set-Up
- Test Summary
- Current Status
- Results
- Summary

Wafer Probing

- Set-Up:
- PC running LabVIEW software
- VME Crate containing:
- SEQSI sequencer
- VI²C card
- 8-bit FADC
- RS232 interface b/w PC and Micromanipulator probe station
- Wafer probing:
- 396 complete APV25 sites per wafer
- ~10 hours testing time per wafer
- Results archived on local database
- 'Wafer map' summary and cutting template

Test Summary

- Basic digital functionality
- Read \& write to all registers
- Check for stuck bits
- Chip addressing
- Correct data frame header/address
- Random triggers
- Power supply currents
- Check $\mathrm{I}_{\mathrm{DD}} \& \mathrm{I}_{\mathrm{SS}}$ during operation
- Channel pedestals and calibration
- Adjustable analogue baseline
- Check channel pedestals
- Pulse shape and gain for all channels
- Pipeline
- Check pipeline pedestals
- Correct pipeline column address
- Voltage Stressing
- Reduces infant mortality rate
- Dynamic Voltage Stress:
- APV operation @ $1.5 \times \mathrm{V}_{\mathrm{DD}}$
- Stress duration ~5 s
- Enhanced Voltage Stress:
- Additional bump to $2.0 \times \mathrm{V}_{\mathrm{DD}}$
- Stress duration $=1000 \mathrm{~ms}$
- (Burn-in not recommended)
- Multi mode
- Measure pulse shape whilst operating APV in multi mode
- FIFO
- Check all 30 FIFO locations for stuck bits
- Muxgain
- Check gain adjustment at multiplexer stage

Current Status

- 'Final system’ now in place
- Software modifications:
- Probe station control
- New tests
- Hardware modifications:
- New probe card
- Voltage stress testing
- Outstanding modifications:
- Temperature measurement
- 9 wafers probed (3564 die)
- 2667 die passed \Rightarrow yield $=\mathbf{7 5 \%}$ (70, 77, 79, 75, 76, 73, 77, 80, 66\%)
- 1 wafer showed surface damage (scratching) on delivery
- 'Final system' used to probe last 6 wafers. Results from KGD to follow...
- Wafer cutting
- 4 wafers cut (MinTech)
- KGD from $1^{\text {st }}$ cut wafer reprobed
- 3 failures from 271 KGD
- Failures are due to cutting damage
- Wafer reprobing
- Check on reproducibility of results
- 1 wafer reprobed
- 9 discrepancies from 396 sites
- Due to poor contact \rightarrow reprobe on-wafer
- Screening is effective!
- Bad die not escaping net

Supply Currents

- Operational chip configuration
- Deconvolution mode
- Raised baseline
- Default I²C bias values
- Cuts on supply currents:

$$
\begin{aligned}
70 & <\mathrm{I}_{\mathrm{DD}}<100 \mathrm{~mA} \\
120 & <\mathrm{I}_{\mathrm{SS}}<170 \mathrm{~mA}
\end{aligned}
$$

- Measured supply currents:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{DD}}=87.3 \pm 2.4 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{SS}}=139.0 \pm 2.7 \mathrm{~mA}
\end{aligned}
$$

Channel Pedestals

- Cuts on channel pedestals:
$50<$ Pedestal < 90 [ADC counts] (Raised baseline)
- Measured channel pedestals:
(Decon) 65.7 ± 3.7 [ADC counts]
(Peak) 67.1 ± 3.8 [ADC counts]

- Pedestal spread $\approx 0.5 \mathrm{mips}$

Worst case $\approx 0.9 \mathrm{mips}$
($1 \mathrm{mip} \approx 30 \mathrm{ADC}$ counts)

Channel Noise

- ENC conversion
- No external signal generation for calibration, can only approximate...
- Digital header range ≈ 8 mips $(\pm 20 \%)$
≈ 240 bits ($\pm 5 \%$)
- $1 \mathrm{mip} \approx 25000 \mathrm{e}$
$\Rightarrow 1 \mathrm{mip} \approx 30 \mathrm{ADC}$ counts
$\Rightarrow 1 \mathrm{ADC}$ count $\approx 830 \mathrm{e}$
- Channel noise (deconvolution mode):
$=0.67 \pm 0.05$ [ADC counts]
$\approx 560 \mathrm{e}$
(cf. 430e measured with calibrated set-up)

Pulse Shapes and Gain

- Data from 6 wafers (1770 KGD)
- Deconvolution mode
- $\mathrm{ICAL}=50(\sim 2 \mathrm{mips})$
- Cuts on channel gain (G):
- $\mathrm{G}_{\text {abs }}>20$ [ADC counts]
- $\left|\mathrm{G}_{\mathrm{abs}}-\mathrm{G}_{\mathrm{ave}}\right|<15$ [ADC counts]
- Measured channel gain:
$\mathrm{G}=53.9 \pm 4.6$ [ADC counts]

Pulse Shapes and Gain (2)

- Data from 1 wafer (306 KGD)
- Deconvolution mode
- $\mathrm{ICAL}=50(\sim 2 \mathrm{mips})$
- Cuts on channel gain (G):
- $\mathrm{G}_{\text {abs }}>20$ [ADC counts]
- $\left|\mathrm{G}_{\mathrm{abs}}-\mathrm{G}_{\mathrm{ave}}\right|<15$ [ADC counts]
- Measured channel gain:

$$
\mathrm{G}=58.6 \pm 3.3 \text { [ADC counts] }
$$

- Maximum deviation in gain

Across 6 wafers $={ }_{-27.9 \%}^{+29.9}$
Across 1 wafer $={ }_{-23.2 \%} \mathbf{1 9 . 5}$

- Due to non-linearity in calibration cct capacitors and/or multiplexer resistors

Summary

- 'Final' probing set-up in place ready for 50 wafer order
- Excellent yield: 75\% (2667 KGD)
- APV25S1 performs excellently
- Good uniformity between chips and wafers
- Results 'black or white’ - no 'grey area'
- Die either good or not
- Loose cuts appear to screen effectively
- $\sim 50 \%$ of failures are digital
- Wafer cutting
- $\sim 1 \%$ die failed due to cutting damage (3/271)
- Wafer reprobing
- Reproducible results
- Screening is effective

