
 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 1 2 /21/2002

CCU25
Communication and Control Unit

ASIC
for Embedded Slow Control

A. Marchioro C. Ljuslin C. Paillard

D R A F T

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 2 2 /21/2002

1. DOCUMENT HISTORY
27/3/97- A.M. - Rev 0.10
 First draft version.
30/4/97 – A.M. Rev 0.127
 Clean-up and improvements
24/7/97 – A.M. Rev 0.143
 Clarifications on broadcast, clean-up, packet length.
8/6/00 – A.M. Rev. 2.0
 Major Revision for 0.25 um version
19/2/02
 - A.M., C.P. cleanup after submission and first tests

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 3 2 /21/2002

2. GENERAL
The Communication and Control Unit ASIC (CCU-25) is a special purpose integrated circuit
built in a radiation hard technology. It is used to implement a dedicated control link system in
the CMS tracker for the control and monitoring of the embedded front-end electronics. It is
normally used in conjunction with another ASIC, a special purpose PLL (Phase-Locked-
Loop), which is necessary for the distribution of the time critical trigger and of the low jitter
clock to the front end ASICs.

This document describes the CCU, its logical and electrical interfaces, programming features
and operating modes. It also includes descriptions of the chip pin-out and electrical
characteristics. In its basic architecture, the CCU supports a ring-type network topology,
although a point-to-point type of network can also be configured.

To put this ASIC in the context where it will be used, a brief review of the tracker control
system is provided in the next section. On the other side, the CCU is not limited to
applications in the CMS tracker, as no special features and/or constraints of the tracker have
determined its architecture.

2.1. Overview of CMS tracker Slow Control

The CMS tracker control system uses a ring topology configured as a local area network. A
module called FEC (Front-End-Controller) is the master of the network and uses two fibers
for sending the timing and data signals to the slave modules which in turn use two to fibers to
transmit a return clock and the return data back. Due to the relatively long distance between
the control room and the detector, the communication between the embedded electronics on
the CMS tracker and the external electronics is expected to use a ribbon of four optical
fibers. An equivalent network can obviously be built using a copper link in locations where
the distance is limited.

This data link is synchronized to the LHC clock frequency and has a raw capacity of 40
Mbit/sec. The synchronization of the FEC and the embedded electronics is provided by the
clock line. CCUs are typically mounted on Control Modules (CCUM), housing the necessary
ancillary electronics, such as line drivers, receivers and level translators.

To minimize costs of a slow control system, it is expected to connect a certain number of
Control Modules serially on local part of the detector resulting in a ring-like arrangement as
the one shown in the figure below.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 4 2 /21/2002

Figure 2 Control ring, simplified view

The arrangement shown in the figure assumes that the connection between the FEC and the
first Control Module is done via optical fibers, the connections between embedded Control
modules is done electrically using differential lines (LVDS) and again the connection back to
the FEC is optical.

The CCU does not support directly connections to optical elements, and therefore separate
optical to electrical interface modules including laser drivers and p-i-n diode receivers are
required.

The length of a single electrical connections between CCUs is expected not to exceed 50-60
cm, with about 8-10 control modules per ring for a total length of the electrical portion of the
ring not exceeding 2-3 meters.

From/To
FEC

Control Module

CCU

A
P

V
s

+
P

LL

E
le

ct
ri

ca
l c

o
n

n
ec

ti
o

n

O/E and E/O
Conversion

CCU

A
P

V
s

+
P

LL

CCU

A
P

V
s

+
P

LL

CCU

A
P

V
s

+
P

LL

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 5 2 /21/2002

A block diagram of the CCU is shown in the figure below:

Figure 3 CCU Block Diagram

I2C Master

I2C Master

Link
Controller

Node
Controller

SCL
SDATA

D[0:7] A[0:15] R/W CS*

DO(A)

CLKI(A)

Local Bus

DI(A)

DO(B)

DI(B)

Clock
Distribution CLKI(B)

CLKO(A)

CLKO(B)

ST1
ST2
ST3
ST4

Trigger
Decoder

Trigger Counter
& other timing logic

16
 x

 I2
C

 B
us

es

PIA

Memory Bus
Interface

PA[0:7] PB[0:7] PC[0:7] PD[0:7]

Ext Reset*

JTAG
Master

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 6 2 /21/2002

2.2. Overview of Communication Architecture
The communication architecture used by the CCU is based on two layers:

?? The first layer (called the Ring) connects the FEC to CCUs and the CCUs between
themselves; the protocol on this layer is message based and is implemented in a
way similar to standard computer LAN networks. The protocol used on this layer will
be called the Ring Protocol.

?? The second layer connects the CCU itself to other chips via so called Channels. The
protocols used here are called the Channel Protocols.

The first layer is unified and common to all CCUs, and is based on a LAN architecture
transporting data packets to and from the FEC and Channel controllers. The second layer is
specific to the channel, and different kind of physical implementations of the channels are
foreseen.

The CCU25 contains the following channel blocks:

?? One node controller (the CCU control itself is seen as a special channel capable for
instance to report the status of the other CCU channels)

?? Sixteen I2C master controllers

?? One memory-like bus controller to access devices such as static memories, A/D
converters etc.

?? Four I/O like parallel bus controllers such as the ones used in the Motorola PIA etc.

?? One trigger distribution controller

?? One JTAG master controller

The dual network layer architecture introduced above is necessary to support applications
where long cables/fibers are used between the FEC and the CCUs (therefore generating long
delays) and to support the relatively slow buses chosen to interface to the front end chips,
such as the I2C bus. This architecture assumes that the control is done by sending data
packets (messages) to the respective channels, which interpret the messages as commands,
execute them on their external interfaces (for example just a read or write operation to a
memory bus) and conditionally return a status reply to the FEC via another message.

This protocol assumes that the remote devices controlled by the CCUs are seen from the
FEC as remote independent channels, each one with a particular set of control registers
and/or allocated memory locations. The channels operate independently from each other to
allow concurrent transactions. The channels can perform transfers to their end-devices
concurrently.

The high level ring network layer, being a local area network-like protocol, is controlled by
software running on an appropriate microprocessor through the FEC.

To decouple the operation of the channels with respect to the one of the ring, the architecture
assumes that all operations on the channels are asynchronous and do not demand an
immediate acknowledgement. Basically this means that all commands carried by the ring
under the form of network messages are posted to the channel interfaces. This is easy to
implement for write operations, where practically one works by posting write operations to the
channels. For read operations one instead sends a read request to the channel using a
request packet; the channel performs the operation on its interface and returns a message to
the requester using a separate packet.

Broadcast operations are supported in a similar manner. Only write broadcasts are
supported. For example, a broadcast operation to several I2C ports proceeds as follows:

1. a broadcast message is sent to all I2C channels in a CCU

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 7 2 /21/2002

2. the I2C channels execute the command concurrently but do not complete it necessarily
at the same time

3. if no error occurs, no acknowledgment is sent back

4. I2C channels with errors report their status conditions back by sending different error
report messages back to the command originator.

5. A FEC can always examine the status of the I2C channels, or any other channel, by
interrogating the CCU node controller in the CCU at channel #0.

A logical view of this multi-channel architecture is shown in the next figure:

Figure 5 Logical view of control ring

2.3. Radiation tolerance features
To be able to operate in the CMS tracker environment, the CCU25 is designed with rad-
tolerance features. These features include:

- rad-tolerant library cells, for total dose tolerance

- redundant circuitry on critical logic blocks for SEU robustness.

Redundant circuitry using three identical copies of the same logic and voting logic is used for
the node controller. This block is critical for the correct functioning of the CCU25, it is
included three times in the chip and all its output signals are selected after a voting circuit
(purely combinatorial) which takes as valid output the signal for which at least 2 out of the
three blocks agree.

To make the rest of the logic blocks more robust against single event upsets, the following
circuit features are also implemented:

- all data paths are protected by parity

- all finite state machines are encoded as one-hot circuits, majority logic with voting added
to node controller

These two features allow the logic in the CCU to discover nodes which have been flipped due
to an SEU event. Whenever such an error occurs, the corresponding logic block aborts
execution of the current operation and signals this event to the node controller. These
features are sufficient to guarantee that the CCU will not perform a wrong operation on one
of the slave chips attached to one of its channels.

FEC

CCU_1

PCI
OA

Node

CCU_8

Node

Channels

I2C - MBUS etc.

Node
Controller

C
ha

nn
el

C
on

tr
ol

le
r

C
ha

nn
el

C
on

tr
ol

le
r

I2C MBUS

Ring Protocol

Channel Specific
Protocols

O/E

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 8 2 /21/2002

3. RING ARCHITECTURE

3.1. Token-ring like protocol
The architecture of a ring of CCUs is functionally very similar to (and inspired from) the one
used by commercial token ring networks (similar to the IBM’s Token Ring or FDDI).

The ring consists basically of a number of node devices (the FEC and the embedded CCUs),
that are all capable of accepting and inserting packets in the ring. In the simplest
implementation the ring consists of only two devices, the FEC and one embedded CCU, thus
resembling a point to point network.

The basic token-ring message transmission protocol for a the ring is based on the following
mechanism:

1) at start up the FEC starts circulating idle patterns in the ring
2) following initialization, the FEC inserts a token in the ring which starts circulating

from node to node
3) all nodes not wanting to transmit will just forward the token, a node which wants to

transmit information to another node waits for arrival of the network token
4) this node replaces the token with a data frame and transmits it in the ring
5) all the nodes reached by the frame which are not the destination of the current frame

just forward the frame
6) the destination node copies the passing frame, modifies just one symbol(1) at the tail

of the frame and forwards the rest of the frame to the network
7) the emitting node receives back its original frame with one symbol modified,

removes it from the ring and regenerates an empty token.

To guarantee the synchronization and proper operation of the ring, a token packet is
generated automatically by the FEC whenever the ring is initialized and travels around the
ring.

The above protocol assumes that an entire ring has only one circulating token or data packet
at any one time.

In this network implementation, to simplify the design of the CCUs, the FEC node will contain
more complexity, such as the capability of generating empty tokens and of initializing and
diagnosing the network.

Handling of communication errors in the ring is a complex issue and is discussed elsewhere
in this manual.

3.2. Token ring packet Format
Two basic packet types are foreseen, one for signaling availability of the ring and the second
to actually carry data.

The network token format is defined as:

SOF
[1 B]

EOF
[2 B(2)]

Figure 6 Token packet format

1 “Symbol” refers to a set of four bits making up the full message packet. For more details see the following chapters. One byte

contains two symbols.
2 “B” refers to one byte

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 9 2 /21/2002

the network data packet format is defined below:

SOF
[1B]

Destination
DAddress
[1 B]

Source
SAddress
[1 B]

Length
[1 or
2 B]

Data
[<128B or
<32K B]

CRC-16
[2 B]

EOF
[2 B]

Figure 7 Data packet format

The Start of Frame (SOF), End of Frame (EOF), Source, Destination, Length and CRC fields
are mandatory for all circulating data packets.

The SOF field is defined as the unique “J-H/K” sequence, using the two special characters
defined in Figure 56 Control characters in network”.

The SOF field is defined as follows:

Symbol Name Comment

0 J Special symbol used for synchronisation

1 H/K K used to mark token packet
H used to mark normal data packet

Figure 8 Frame Header format

The End of Frame (EOF) field consists of two bytes and is defined as follows:

End Delimiter

[0.5 B]

Frame Status

[1.5 B]

Figure 9 EOF definition

The End Delimiter consists of a single “T” character as defined in the Figure 56 Control
characters in network”. The Frame status is generated by the transmitter as three “R”
characters and contains the three following sub-fields:

Symbol Value Comment

ER R/S Error symbol

AR R/S Address recognised

DC R/S Data copied

Figure 10 The EOF frame

These symbols are set by the receiving node; they are generated as “R” symbols from the
source and modified to “S” by the receiver.

The Length field can be one or two bytes long and gives the length of the data payload,
excluding the two length bytes themselves and the CRC field.

When the high bit [bit 7] of the first byte is ‘0’ the length of the field is one byte only and the
maximum payload can be 0-127 bytes long. When the high bit is a ‘1’, the length field is two
bytes long and the data payload can be 0-32K bytes long.

The Data field is not interpreted by the ring protocol and is used exclusively by the channel
adapter for internal addressing and data. This fields are defined explicitly by the functionality
of each channel later in this document.

The data portion of the packet is shown below:

CH#

[1 B]

TR#

[1 B]

Channel Specific Command

[(Length-2) B]

Figure 11 Data portion of packet

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 10 2 /21/2002

Two data bytes are mandatory as payload at the beginning of each data packet:

?? a channel number (single byte field), used to identify a device channel within a node

?? a transaction number (single byte field with wrap-around) used to assure correct
identification of operation within a given channel. This field is always generated by
the initiator of a transaction.

For transactions initiated by the FEC, the transaction number should always be in the range
1-255, as the special transaction number 0 is used for Alarms generated by the CCUs.

The CRC-16 field covers the packet content from the Destination address to the end of the
Data field. The polynomial used for the CRC-16 calculations is:

X16 + X15 + X2 + 1

3.2.1. Spacing between packets

All devices on the ring make sure that the minimum spacing between two packets is at least
two bytes (four characters) of idle characters.

3.2.2. Broadcast mechanism on ring

Broadcast packets are used to send control information to all CCUs (typically from the FEC)
and are defined in the special paragraph “Format of Broadcast packets“ on page 11.

The Destination and Source Address fields specify the addresses of the devices involved in a
transaction, for broadcast packets the destination field should be set in the range 128-255.

Broadcast packets are never acknowledged by CCUs. Such packets always come back to the
generator (FEC) with the three last characters in the EOF field set to “R”.

Therefore, critical messages should never be sent using broadcast packets.

3.3. Node addressing
The following table specifies the node addressing scheme for a ring:

Address Unit

0 FEC’s address

1-127 Address of CCUs

128-255 Broadcast classes 0-127

Figure 12 Node addressing on ring

This scheme assumes that only one FEC per ring will be used and that other FEC modules
eventually on the ring (for example for debugging purposes) should use an address in the
range used for CCUs.

Address assignment of the CCUs on the ring is done via dedicated pins on each CCU.

This broadcast mechanism does not guarantee that
broadcast packets are seen by all CCUs and it should not be used

for critical applications

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 11 2 /21/2002

3.3.1. Format of Broadcast packets

The broadcast packets are marked by using the special address range 128-255 in the
destination field and are otherwise identical to normal packets. Only the sender software in
the FEC has to make sure that the broadcast operation is meaningful for all nodes.

Each CCU is assigned a unique broadcast class number in its internal broadcast register.
Upon reception of a broadcast packet a CCU accepts it only if the broadcast address in the
destination field is equal or less than its internal broadcast class.

3.4. Redundancy specifications
As each ring could control a sizable number of front-end channels it is important to be able to
guarantee a very high reliability for the system. One malfunctioning element in a control ring
will mean the loss of control of too many detector elements and it would clearly be
unacceptable.

A redundancy scheme based on doubling signal paths and bypassing of interconnection lines
between CCUs and between the CCU and the FEC is supported.

3.4.1. Skip Fault Architecture

A simplified schematic of the redundancy architecture used in the ring is shown in the figure
below.

Figure 13 Redundant Skip-Fault Architecture

Basically the ring will consist of two independent data paths, one connecting the CCU
modules serially and a second redundant path which alternatively skips one CCU module in
the chain. To implement this architecture all modules, including the FEC, have two sets of
input ports and two sets of output ports. These ports are simply called A and B ports. During
normal operation, communication occurs among all adjacent modules using the A ports.
Whenever one module fails, the ring can be configured to skip the faulty module. This is
achieved by programming the module preceding the faulty one to select the B port as its
output port. By using the section of bypassing ring the faulty module can be excluded from
the communication chain and full ring protocol can be reestablished. This scheme works as
long as one does not have two broken adjacent modules. Should this occur, the ring can not
be configured to work any longer and it must be repaired.

CCUM

LVDS/CMOS

C
C

U

Primary

Secondary

C
C

U

C
C

U

C
C

U

LVDS/CMOS LVDS/CMOS LVDS/CMOS

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 12 2 /21/2002

3.4.2. Fault repair reconfiguration

The mechanism used to reconfigure a ring with a faulty module is explained in this paragraph
with reference to the Figure 14.

Figure 14 Fault repair reconfiguration example

A fault can occur anywhere in a CCU module in a control ring. Any of the components on the
module, i.e. the CCU itself, the LVDS line driver, the local power supply, the connector etc.
could become defective. In this example, one will assume that the CCUM-3 is somehow
defective. This could be recognized in a variety of ways at the FEC level, for instance the
ring may become silent, or a number of malformed packets could be received at the FEC or
finally packet could occasionally become lost in the ring. Should this happen the software in
the FEC has to start a fault scan procedure.

To support the search in software of the fault in the ring, the following protocol is
implemented in the CCU:

- after hardware reset the CCU assumes that the good input and output ports are always
the ports A.

- consider the CCU which has to be programmed to change its output port (in this example
CCUM-2): the CCU can change the output port it uses only upon reception of a well
formed packet addressed to the CCU itself from the active input port (A or B)

- consider the CCU which has to be programmed to change its input port (in this example
CCUM-4): to instruct the CCU to switch to the alternate input port B (or back to A), a well
formed packet with the command to perform this reconfiguration has to be fully received
from the port B (or A) itself.

- packet requesting the switch of input and output ports may not be returned from the
receiving CCU integrally to the FEC which should not expect to receive them back well
formed. These packets will necessarily be cut by the CCU which performs the switch.
During this reconfiguration, the FEC should not expect to receive well formed returning
packets.

Notice that the FEC does not know where the fault occurred and has to search for it. The
procedure is based on searching the fault from the end of the ring back to the first CCU
module and can work as follows:

- the ring is reset, all CCUs are configured to use ports A for input and output

- sending packet or tokens to the faulty ring will result in no packet or malformed packets
to be returned

- the FEC assumes that CCUM-4 is faulty. It will send a message to CCU-3 to use its
alternative output port and the FEC itself is programmed to listen to input port B (this has
to be so because the CCU-4 can not use the alternative output port, as this is not
connected, see figure)

CCUM-1

LVDS/CMOS

C
C

U

Primary

Secondary

C
C

U

C
C

U

C
C

U

LVDS/CMOS LVDS/CMOS LVDS/CMOS

CCUM-2 CCUM-3 CCUM-4

B

A

B

A

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 13 2 /21/2002

- If the fault existed at the level of the LVDS driver between CCU-3 and CCU-4, the
communication should be reestablished and the ring should be back working. If the fault
was instead in the CCU-3 itself, the search has to continue

- If the CCU-3 was faulty, the FEC would still see no returning packets from the ring. It will
then assume that CCUM-3 is faulty and reconfigure itself to listen to input port A.

- The FEC will then send a packet to CCU-2 instructing it to use the alternate output port
B, therefore skipping module 3. Still, as module 4 is configured to listen to input port A
the ring will appear to be faulty. The FEC ignores the problem and sends now a packet to
CCU-4 (which will be received at port B) instructing it to use B as input port. This packet
will also not get back to the FEC, but the ring is now configured properly and operation
can restart normally. Subsequent packets will circulate normally in the ring.

3.4.2.1. Timing synchronization

Reconfiguration of the ring required recalibration of the timing synchronization paths, as the
normal and the redundant paths are necessarily of different physical lengths.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 14 2 /21/2002

3.5. Error Handing
Error handling can become quite complex on LAN networks. The following paragraphs
attempt to collect a list of error possibilities with the relative handling procedure.

In the following discussion one has to take into account that each ring packet has always a
forward and a return path, as all packets make always a complete tour of the ring and are
always removed from the ring by the source of the packet itself.

The handling of error conditions is largely a responsibility of the software driver running on
the FEC. For simplicity, the CCU hardware has to be able to recognize error conditions, but
all correction actions are always taken in software by the driver running on the FEC.

3.5.1. Ring timeouts
Under normal conditions, the ring always contains one and only one token or data packet at
any one time. Hardware failures could generate the condition that the token gets lost during a
circulation of the ring, and the ring becomes not accessible. This situation must be
recognized by the FEC which monitors the time between two successive tokens or packets.
Should this time exceed a maximum timeout of 100 ms, the FEC generates a new token and
inserts it in the ring.

When the FEC enters the mode used for recognizing and bypassing a faulty CCU module, all
timeout recognition features must be disabled.

3.5.2. Packet lost

Occasionally a data packet could be lost in the ring (for instance due to a sync loss in the
header). Under this condition, the emitting node will never receive the packet back and in
principle would hang on an infinite wait loop and would also never re-emit a token. To avoid
this situation, the FEC emits a new token after a maximum silence time-out as explained in
the previous paragraph. When a CCU waiting for the return of its data packet receives
instead a token, it should assume that the packet has gone lost. If this was an Alarm packet,
the CCU is programmed with a retry counter and will try again. If this was a normal packet,
the CCU may or may not have actually performed the associated action and the software
driver will have the responsibility of handling this situation.

Another error mechanism is in the case of a read operation on a busy channel. In that case
the originating packet is returned with the Data not Copied flag set. This means that the
channel certainly skipped the command and that it has to be repeated.

3.5.3. Error present but packet length correct

First we will deal with all simple hardware generated errors, i.e. we assume that all packets
are generated correctly at the source and just get corrupted by the transmission hardware on
one or more bit, but the total bit length of the ring packet remains correct.

3.5.3.1.Traffic originated by the FEC

3.5.3.1.1.Command packet corrupted in the path between FEC and CCU

In this situation the destination (assuming that the destination field is not corrupted) receives
a corrupted packet as seen by the CRC-16 calculation. The node controller does not dispatch
the packet to any channel. The ER symbol in the EOF frame is set, CRC is not recalculated
and the packet is returned back to the FEC. All other CCUs ignore the error and just forward
the packet as normal. The FEC should assume a transient error and re-transmit the packet.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 15 2 /21/2002

In the special case when the error has occurred exactly in the destination field, no CCU may
see the packet, which will then return to the FEC without the ER symbol set in the EOF
frame. The FEC will see the CRC-16 error, assume a transient error and re-transmit the
packet.

3.5.3.1.2.Command packet corrupted in the return path between CCU and FEC

In this case the CCU has received a packet correctly, but this gets corrupted while traveling
back to the FEC. In this case the EOF field was already set with the AR and DC symbols.
The FEC recognizes a wrong CRC.

In the meantime the CCU may have already executed the command and, depending on the
command, it might be ready to send back a reply packet.

At this point the FEC has to re-synchronize by software to the CCU.

3.5.3.2.Traffic originated by the CCU

3.5.3.2.1.Reply packet corrupted between CCU and FEC

A command packet was correctly sent to the CCU and the CCU sends back a reply packet,
but this gets corrupted on its way to the FEC. The FEC recognizes the wrong CRC-16 and
takes no action, it forwards the packet back to the CCU as normal. The CCU will eventually
get the corrupted packet back; it will find out that the CRC-16 is wrong and re-transmit the
packet.

3.5.3.2.2.Reply packet corrupted in return path between FEC and CCU

A command packet was correctly sent to the CCU and the CCU sends back a reply packet.
The reply packet arrives properly at the FEC (which has set the AR and DC symbols in the
EOF) but is gets corrupted on its way back to the CCU but this gets corrupted on its way to
the FEC. The CCU finds out about the error with the CRC-16 check but it does not know
whether the FEC has correctly received it (as the EOF field is unreliable).

The CCU re-transmits the same packet again. The CCU has to discard packets which are
received twice.

3.5.3.3.Retransmission maximum count

To avoid dangerous situations in which one of the above conditions results in an infinite
retransmission loop, both CCUs and FECs have a maximum retransmission count of four.

3.5.3.4.Error in Interrupt packets

The interrupt packets are originated in the CCUs. As for the other packets they can get
corrupted on two sections of the ring tour: on the forward path to the FEC and on the return
path to the source CCU. For both cases the CCU will find a wrong CRC-16 and will retry the
transmission.

3.5.4. Complex error conditions

By allowing the malicious modifications of two or more bits in two correlated packets, one
can build extremely complex error conditions in the protocol between the FEC and the CCUs.
These conditions should be handled by software on the FEC and no special hardware support
is foreseen in the CCU.

A careful examination of these complex error conditions is left to the implementation of a
software driver for the FEC.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 16 2 /21/2002

One relatively simple error condition occurs when a packet is completely corrupted, because
of noise, new connections in the ring etc. All CCUs ignore anyway packets where the
destination address does not correspond to their ring address, and check CRC-16 for all the
ones with the correct destination address.

The FEC will drop all packets from the ring which are evidently corrupted, wait for a nominal
delay time, and insert a clean token in the ring. Packets evidently corrupted are defined as
those with:

?? Wrong SOF field: the FEC blocks forwarding of this packet until it recognizes idle
characters, it then waits a 1 milliseconds delay and inserts a new token

?? Invalid source or destination field: The FEC keeps a list of the valid sources and
destinations in the ring. Assuming a packet is being forwarded by the FEC with one of
these two fields invalid, the FEC will stop the forwarding and abort transmission,
recovering with a delay and a clean token.

?? Invalid length: The FEC is forwarding a packet but it realizes that the length of the packet
is wrong. It will abort forwarding, wait for a nominal delay and insert a clean token.

A particular nasty error could occur when the FEC recognizes that the input line does never
stabilize with idle characters. At this point a hard reset of the ring will be necessary.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 17 2 /21/2002

4. CHANNELS IN CCU

4.1. General
Channels receive commands from the node controller and control the actions on the bus to
which they connect as masters. These commands are contained in the data packet and
therefore the data content in a given packet is interpreted by each channel differently.

The command sub-field (typically the third byte in a message to a channel) contains the code
for the requested operation. Each channel has a set of valid commands as explained in this
chapter. Channels receiving an invalid command do not execute any action and report the
error condition to the node controller.

Upon reception of a command a channel performs the required operation on its interface and
then, depending on the specifics of the command, can return a reply to the node controller as
a data block which is then transmitted to the ring destination in a ring message packet.

The distinction between channels at the level of the FEC is performed essentially by
software.

The following paragraphs specify the content of the packets for each type of channel.

In this implementation, the CCU does not support command queueing for the I2C channels.
Only one command can be in execution at any one time.

4.2. Allocations of channels in the CCU
Each channel in a ring data packet (message) is identified by the first data byte in the data
payload. The following table gives the internal address allocation for channels in the CCU:

Channel Number

[Hex]

Function

0 CCU Node Controller

0x01?0x0F Reserved

0x10?0x1F I2C channels (16 identical)

0x20 Broadcast channel for I2C

0x21?0x2F Reserved

0x30?0x33 PIO channels (4 identical)

0x34?0x3F Reserved

0x40 Memory channel

0x41?0x4F Reserved

0x50 Trigger distribution channel

0x51?0x5F Reserved

0x60 JTAG Master channel

0x61?0xfc Reserved

0xfe?0xff Special Interrupt channels

Figure 15 Channel number allocation

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 18 2 /21/2002

All I2C channels behave in a similar way, by accepting the command and executing an
operation on their ports. Only the broadcast I2C channel number 0x20 is special, as an
operation sent to this channel is actually copied to all I2C channels in the CCU. Broadcast
operations to I2C assume that write “posting” is used, i.e. no acknowledgement is required.

4.3. CCU controller
The CCU controller is a dedicated logic block inside each CCU which is needed mainly for
network and internal channels supervision. The CCU controller is reachable with the same
protocol used to transfer data to the other port channels.

The following eight bit registers are defined in the controller:

Name Function

CRA Control register A

CRB Control register B

CRC Control register C

CRD Control register D

CRE Control register E

SRA Status register A

SRB Status register B

SRC Status register C

SRD Status register D

SRE Status register E

SRF Status register F

Figure 16 Control and Status registers in CCU Controller

Control registers are all read/write registers. They can be read back after a write operation to
verify their content. Status registers are read-only registers, as they are set typically by
hardware inside the CCU.

4.3.1.1. Control Register A

Control register A is a general control register for the CCU. It contains control bits which are
relevant for the operation of all channels in the CCU.

The following bits are defined:

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 19 2 /21/2002

Bit Name Function Comment

0-4 Reserved

5 EXTRES Generates external
reset

Writing a “1” to this bit
generates a 10 microseconds
reset pulse on the
ResetOutZ pin. This bit is
always read back as “0”.

Read as a “1” during the
reset time.

6 CLRE Clear error Writing a “1” to this bit
clears all internal error
flags. The bit is always
read back as “0”

7 RES Reset All Channels Cold reset for all
channels, but not for the
node controller, writing a
“1” to this bit generates a
general reset. This bit is
always read back as “0”.

Figure 17 Node controller control register A

4.3.1.2. Control Register B

This register controls the operation of the special ALARM1-4* lines and of the retry counters
as defined below:

Bit Name Function Comment

0 ENAL1 Enable ALARM1* interrupt This bit is initialised to
“0” after reset.

1 ENAL2 Enable ALARM2* interrupt This bit is initialised to
“0” after reset.

2 ENAL3 Enable ALARM3* interrupt This bit is initialised to
“0” after reset.

3 ENAL4 Enable ALARM4* interrupt This bit is initialised to
“0” after reset.

5-4 RTRY Retry count for Alarm
interrupts. The retry is
activated if a clear has
not been received after
a 1 millisecond timeout
interval.

These two bits determine
how many times a CCU will
try to retransmit a packet,
if this came back with a
wrong CRC-16 after a ring
circulation.

00 – none

01 – once

10 – twice

11 – four times

These bits are initialised
to “11” after reset.

7-6 Reserved

Figure 18 Control register B in node controller

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 20 2 /21/2002

The Enable Alarm bits are cleared automatically. They cannot be cleared by writing a “0”.

When one of the external ALARM lines is activated, the node controller sends a special
interrupt message packet to the FEC. The ALARM lines are level sensitive, as is detailed in
the paragraph 4.10 Handling of Alarms.

The interrupt packet is a special packet, as it is not solicited by the FEC, and therefore can
not contain a meaningful transaction number (a “00” is sent in the transaction number field).

The format of the packet is shown below:

Action CMD

[hex]

Command Packet Format

ALARM Interrupt none R: CH#+ “00” + Alarm_Number

Figure 19 Interrupt packet format

In this special case, the channel number is 0xfe.

4.3.1.3. Control Register C

Control register C is used to configure the redundancy features of the CCU.

Bit Name Function Comment

0 ALTIN Writing a “1” in this
bit selects Port B as
the current Input Port

This bit is initialised to
“0” after reset.

Writing a “1” into this bit
also generates a “1” in the
PLLSEL output pin.

1 SSP Selects the alternate
Output Port (B).

This bit is initialised to
“0” after reset. The signal
DoutA/B on the non-selected
port produces a continuous
stream of idle characters.

7-2 Unused Reserved

Figure 20 Definition of control register C (redundancy control)

4.3.1.4. Control Register D

Control register D contains the broadcast class for the CCU. The broadcast class is a 7 bit
number determining which CCUs respond to a broadcast operation

Bit Name Function Comment

6-0 BCLS Broadcast Class

7 Unused Reserved

Figure 21 Control register D bit allocation

4.3.1.5. Control Register E

Control register E is a 24 bit wide register and contains channel enable bits

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 21 2 /21/2002

Bit Name Function Comment

23 Unused

22 ENJTAG Enable JTAG controller

21 ENTRG Enable trigger controller

20 ENMEM Enable memory controller

19:16 ENPIO Enable PIO controllers

15:0 ENI2C Enable I2V controllers

Figure 22 Control register D bit allocation

CAREFUL:

Due to a small bug in the logic, writing the control register E requires care. The following
sequence MUST be followed:

WR Control Reg A

WR Control Reg B

WR Control Reg C

WR Control Reg D

WR Control Reg E

RD Control Reg A

RD Control Reg B

RD Control Reg C

RD Control Reg D

RD Control Reg E

4.3.1.6. Status Register A

The node controller status register A is defined as follows:

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 22 2 /21/2002

Bit Name Function

0 PED Error bit, set if any CRC error was detected
in a passing packet. This error is cleared
with a general node controller reset or
clear error.

1 IE Internal error, set if any error inside the
node controller state machines of the CCU
was detected. This error is cleared with a
general node controller reset or clear
error.

2 ALSET This bit is set if one or more of the ALARM*
inputs to the CCU are currently active
(low). The bit is cleared by de-activating
all external alarm lines.

3 CCUPERR This bit is set if a parity error is
detected in the internal CCU registers. This
error is cleared with a general node
controller reset or clear error.

4 CHAPERR This bit is set if a parity error is
detected in any of the channels. This error
is cleared with a general node controller
reset or clear error.

5 ILLSEQ This bit is set if an illegal sequence of
tokens is detected on the serial line. This
error is cleared with a general node
controller reset or clear error.

6 INVCMD Invalid command. This bit is set when the
node controller receives a correct ring
message but the command is invalid. This
error is cleared with a general node
controller reset or clear error.

7 GE This bit is the global OR of all error bits
generated in any channel in the CCU.

Figure 23 Node controller status register A

4.3.1.7. Status Register B

The status register B is an 8 bit register containing the transaction number (TR#) of the last
correctly received command for any of the CCU channels. This is necessary to support the
case when a packet traveling through the ring gets corrupted after having reached the
destination and the FEC has to find out whether the packet had already reached its
destination or not.

4.3.1.8. Status Register C

This register reports the status of the redundancy configuration register.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 23 2 /21/2002

Bit Name Function Comment

0 ACTPRT This bit reports the
currently active input
port. (This is the
status pf the PLLSEL
output pin)

This bit is initialised to
“0” after reset.

When the current active
input port is A this bit
contains a “0”, when the
current active input port
is B this bit contains a
“1”.

7-1 Unused Reserved

Figure 24 Definition of status register C (redundancy control)

4.3.1.9. Status Register D

The status register D contains the 8 bit address of the source field for the last ring message
addressed to this CCU.

4.3.1.10.Status Register E

The status register E is a 24 bit register and contains the following:

High Byte

23-18 Unused

17 Trigger Busy

16 Memory Busy

Middle Byte

15-8 I2C Busy

Low Byte

7-0 I2C Busy

Figure 25 Data portion of packet

4.3.1.11.Status Register F

The status register F is a 16 bit wide register and contains the parity error counter bits[15:0].
This counter is cleared by Clear Error from control register A

4.3.1.12.Command codes (3)

The following table summarizes the commands accepted by the node controller for
operations on its registers.

Command CMD

[hex]

Command and Reply
Formats

Operation

Write control register A 0x00 C: CH#+TR#+CMD+DW

R: none

The control register A is
written with a byte

Write control register B 0x01 C: CH#+TR#+CMD+DW

R: none

The control register B is
written with a byte

Write control register C 0x02 C: CH#+TR#+CMD+DW

R: none

The control register C is
written with a byte

3 The symbols used in the command tables are explained in Appendix 1 – Command symbols

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 24 2 /21/2002

Write control register D 0x03 C: CH#+TR#+CMD+DW

R: none

The control register D is
written with a byte

Write control register E 0x04 C:
CH#+TR#+CMD+DW24

R: none

The control register E is
written with a byte

Read Control register A 0x10 C: CH#+TR#+CMD

R: CH#+TR#+DR

Read back control register A

Read Control register B 0x11 C: CH#+TR#+CMD

R: CH#+TR#+DR

Read back control register B

Read Control register C 0x12 C: CH#+TR#+CMD

R: CH#+TR#+DR

Read back control register C

Read Control register D 0x13 C: CH#+TR#+CMD

R: CH#+TR#+DR

Read back control register D

Read Control register E 0x14 C: CH#+TR#+CMD

R: CH#+TR#+DR24

Read back control register E

Read Status register A 0x20 C: CH#+TR#+CMD

R: CH#+TR#+DR

Send back a packet with
content of status register A

Read Status register B 0x21 C: CH#+TR#+CMD

R: CH#+TR#+DR

Send back a packet with
content of status register B

Read Status register C 0x22 C: CH#+TR#+CMD

R: CH#+TR#+DR

Send back a packet with
content of status register C

Read Status register D 0x23 C: CH#+TR#+CMD

R: CH#+TR#+DR

Send back a packet with
content of status register D

Read Status register E 0x24 C: CH#+TR#+CMD

R: CH#+TR#+DR24

Send back a packet with
content of status register E

Read Status register F 0x25 C: CH#+TR#+CMD

R: CH#+TR#+DR16

Send back a packet with
content of status register F

Figure 26 Commands for node controller

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 25 2 /21/2002

4.4. Redundancy control
The design of the redundancy scheme for the CCU must take into account that the same clock used
by the CCU to synchronize to the incoming data must also be distributed to the electronics on the
front end modules again for clocking and trigger distribution. It must also be remembered that the
clock signal used in the ring is coded with a missing pulse to indicate a trigger signal.

In addition, as the clock and data signals used in the ring protocol are transmitted through AC
coupled lines, they must be running on both ports at all time. Under normal operation the CCU uses
the input port A (ClkInA and DinA signals) to receive clock and data.

4.4.1. LVDSMUX

To provide a proper clock to the front end electronics, a special ASIC is used together with the CCU.
This ASIC is called the LVDSMUX. This ASIC has two functions:

- it selects one of the two incoming clock lines and distributes it to the front end
components

- it converts signals from LVDS levels from/to CMOS levels as necessary.

A block diagram of the LVDSMUX is shown in the following figure.

Figure 27 CCU Redundancy cabling scheme

The CCU receives two continuous clock streams on ports A and B. The inactive port always receives
and sends idle patterns without any token.

When the alternate port B is used by the CCU ring, the timing of the clock signal clearly changes, as
the normal and alternate ring are of different length. This requires a readjustment of the clock phase
to the front end module. To control which clock has to be used by the front end electronics, the CCU
can use the PLLSEL output to force the LVDSMUX to select the CLKB signal.

When switching between the two different clock sources, the CCU should pay attention not to
generate spurious glitches which could generate problems in the front end electronics.

CCU

Data In-Port A

Data In-Port B Data Out-Port B

Data Out-Port A

Clk In-Port A

Clk In-Port B

ClkIn_A ClkOut_A

DIn_A DOut_A

PLL_Clk

DOut_B

ClkOut_B
ClkIn_B

DIn_B

PLLCKSEL

LVDSMUX

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 26 2 /21/2002

Notice that the CCU uses as its main clock a signal which has sometimes missing pulses, therefore
the serial data are not allowed to change when a clock pulse is missing. To be able to recover the
trigger pulse, a PLL must be used in parallel to the CCU to detect the trigger signals.

4.4.2. Input port control

After a power up or an external reset the CCU operates normally with A as active input port. Port B
receives idle patterns. To switch to the alternate port B the CCU must receive a proper and well
formed command through its B port. This command consist of writing a “0x01” into the Register C in
the Node Controller. At his point, any activity coming from the A port is ignored. To switch back to the
A port, the CCU must receive a proper and well formed command from the A port, i.e. write a “0” into
the LSB of the Register C in the Node Controller.

Notice that during port switching the CCU must also change its input clock source. This can only be
done after a complete packet is received. To be able to perform this operation the CCU has two
completely and fully independent clock sources reaching the node controller. The CCU contain
internal logic capable if switching its own input clock source without generating glitches in its
operation. During port switching, the packet sent by the FEC is not returned.

During the time an input port is inactive, any other packet received which is not the port switch
command itself is simply ignored.

4.4.3. Output port control

After a power up or an external reset the CCU operates normally with port A as active output port.
The operation of switching output port to B is achieved by writing a “1” into bit 1 of the Control
Register C in the Node Controller. The command must come from the currently active input port. To
switch back to Output Port A, the bit 1 in register C has to written with a “0”. Notice that it is perfectly
possible for a CCU to work with both input and output ports B.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 27 2 /21/2002

4.5. I2C Channel
The I2C interface implements normal 7 bit addressing, long 10 bit addressing I2C transactions and
extended RAL mode transfers. The operations performed by the I2C interface are:

?? Single byte read-write with normal 7 bit I2C addressing

?? single byte read-write with 7+ 8 bit address (indirect address in RAL(4) mode)

?? extended I2C with 10 bits addressing

?? four bytes read-write mode with normal 7 bit I2C addressing

4.5.1.1. I2C interface registers

Several registers control the operation of the I2C interface and are implemented in each of
the 16 I2C channels.

Name Comment

CRA Control register A

MSK Mask register for logical operations

SRA Status register A

SRB Status register B

SRC Status register C

SRD Status register D

Figure 28 Control and Status registers in I2C channel

4.5.2. I2C Control registers

The Control register A in the I2C interface is defined as follows:

4 Special I2C mode defined to access registers in APV chips.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 28 2 /21/2002

Bit Name Function

1-0 SPEED Denotes the speed of operation of the I2C
interface (SCL clock rate):

00 – 100 kHz

01 – 200 kHz

10 – 400 kHz

11 – 1 MHz

2 Reserved 0

3 Reserved 0

4 Reserved 0

5 EBRDCST Enable acceptance of broadcast operations.

Once set to “1” this bit enables the channel to
accept I2C broadcast operations. This bit is
initialised to “0” after reset.

6 FACKW Force acknowledge for write or RMW operation

Write operations and RMW operations which do not
generate errors are not acknowledged. Forcing this
bit to “1” generates an acknowledgement packet.
This bit is cleared at reset.

7 Unused

Figure 29 Control register A in I2C interface

4.5.3. Logical mask register.

This register can be written with an 8-bit value which is used during logical operations on the
I2C bus. These operations are of the type read-modify-write and can only be executed in
single-byte mode.

Three basic operations are allowed:

?? Logical AND

?? Logical OR

?? Logical XOR

And are performed in the following way:

1. the I2C interface reads a byte from the specified address

2. a logical operation is performed with the mask register value

3. the result is written back into the I2C address

4. the original value is returned to the FEC (if CRA[6] is set).

4.5.4. I2C Status Registers

Several registers are used to report the status of the I2C channel

4.5.4.1. Status Register A

This register contains the following information:

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 29 2 /21/2002

Bit Name Function

1-0 Reserved

2 SUCC This bit is set when the last I2C transaction was
successfully executed.

3 I2CLOW This bit is set to ‘1’ is the I2C master port finds
that the SDA line is pulled low (“0”) before
initiating a transaction. If this happens the I2C
bus is probably broken. The bit represents the
status of the SDA line and cannot be reset.

4 Reserved

5 INVCOM This bit is set if an invalid command was sent to
the I2C channel. The bit is cleared by a channel
reset.

6 NOACK This bit is set if the last operation has not been
acknowledged by the I2C slave acknowledge. This bit
is set/reset at the end of each I2C transaction

7 GE This bit is set if any error has occurred on the
I2C channel and is cleared only by a channel reset
command

Figure 30 Status register A in I2C interface

4.5.4.2. Status Register B

Status register B contains the number of the last correctly executed transaction (TR#). This
register is overwritten after every I2C transaction except read and write operations to/from
the control and status register.

This register is cleared at reset.

4.5.4.3. Status Register C

Status register C contains the number of the last incorrectly executed transaction (TR#). The
register is cleared at reset.

4.5.4.4. Status Register D

This register contains the code of the last command sent to this I2C channel, including
control and status commands.

4.5.5. I2C Commands

The following table summarizes all the commands accepted by the I2C channels.

Command CMD

[hex]

Command and
Reply Format

Single byte write normal
mode

0x00 C: CH#+TR#+CMD+A7+DW

R: none or CH#+TR#+ACK

Single byte read normal
mode

0x01 C: CH#+TR#+CMD+A7

R: CH#+TR#+DR+ACK

Single byte write
extended mode

0x02 C: CH#+TR#+CMD+A[9:8]+A[7:0]+DW

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 30 2 /21/2002

R: none or

 CH#+TR#+ACK

Single byte read extended
mode

0x03 C: CH#+TR#+CMD+A[9:8]+A[7:0]

R: CH#+TR#+DR+ACK

Single byte write RAL
mode (same CMD code
as extended mode)

0x02 C: CH#+TR#+CMD+A7+ACR+DW

R: none or

 CH#+TR#+ACK

Single byte read RAL
mode

0x11 C: CH#+TR#+CMD+A7+ACR

R: CH#+TR#+DR+ACK

RMW-AND in normal
mode

0x80 C: CH#+TR#+CMD+A7

R: none or

 CH#+TR#+DR+ACK

RMW-OR in normal mode 0x81 C: CH#+TR#+CMD+A7

R: none or

 CH#+TR#+DR+ACK

RMW-XOR in normal
mode

0x82 C: CH#+TR#+CMD+A7

R: none or

 CH#+TR#+DR+ACK

RMW-AND in extended
mode

0x83 C: CH#+TR#+CMD+A[9:8]+A[7:0]

R: none or

 CH#+TR#+DR+ACK

RMW-OR in extended
mode

0x84 C: CH#+TR#+CMD+ A[9:8]+A[7:0]

R: none or

 CH#+TR#+DR+ACK

RMW-XOR in extended
mode

0x85 C: CH#+TR#+CMD+ A[9:8]+A[7:0]

R: none or

 CH#+TR#+DR+ACK

Write Control register A 0xf0 C: CH#+TR#+CMD+DW

R: none

Read Control register A 0xf1 C: CH#+TR#+CMD

R: CH#+TR#+DR

Read Status register A 0xf2 C: CH#+TR#+CMD

R: CH#+TR#+DR

Read Status register B 0xf3 C: CH#+TR#+CMD

R: CH#+TR#+DR

Read Status register C 0xf4 C: CH#+TR#+CMD

R: CH#+TR#+DR

Read Status register D 0xf5 C: CH#+TR#+CMD

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 31 2 /21/2002

R: CH#+TR#+DR

Write Mask register 0xf6 C: CH#+TR#+CMD+DW

R: none

Read Mask register 0xf7 C: CH#+TR#+CMD

R: CH#+TR#+DR

I2C channel reset 0xff C: CH#+TR#+CMD

R: none

This command bypasses all pending commands in
the channel and is executed as a hardware reset on
the specified channel only.

Figure 31 Commands for I2C channel

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 32 2 /21/2002

4.6. Memory Bus Channel
The Memory Data bus implemented on the CCU can address a 64KB memory through a 16
bit address and 1 byte wide data interface. It can perform single and multiple byte read-write
operations as on a normal byte-wide memory device. The operations foreseen are:

?? single byte read-write to address

?? multiple (up to 2K) bytes read-write to address with address auto-increment

?? read-modify-write single byte to address with mask

 Several registers control the operation of the memory bus channel.

Name Comment

CRA Control register A

MSK Mask register for logical operations

SRA Status register A

WIN1L Window 1 base address

WIN1H Window 1 high address

WIN2L Window 2 base address

WIN1H Window 2 base address

Figure 32 Registers in memory bus channel

To simplify the design of simple peripheral devices connected to the CCU memory channel,
the CCU provides pre-decoding of up to two memory ranges defined in the window registers.

4.6.1. Memory Bus Control registers

The Control register is defined as follows:

Bit Name Function

1-0 SPEED Denotes the speed of operation of the memory
interface
(CS* is low for half of the bus clock cycle time):

00 – 1 MHz

01 – 4 MHz WARNING: This is the only valid mode
for block transfer operations

10 – 10 MHz

11 – 20 MHz.

Initialised to “00” after power up and reset.

2 ENW1 Enable operation of decoder for window 1.
Initialised to “0” after power up and reset.

3 ENW2 Enable operation of decoder for window 2.
Initialised to “0” after power up and reset.

4-7 Reserved

Figure 33 Control register A in memory channel

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 33 2 /21/2002

4.6.2. Memory bus Window registers

The window registers 1 and 2 provide a base address and a high address respectively for two
memory ranges that external devices might be using without the need of an external
decoder.

Register Function

WIN1L This 16 bit register contains the base address
for window 1. Reset writes a 0 to this register.
This value is the lowest accessible address for
window 1.

WIN1H This 16 bit register contains the high address
for window 1. Reset writes a 0 to this register.
This value is the highest accessible address for
window 1.

WIN2L This 16 bit register contains the base address
for window 2. Reset writes a 0 to this register.
This value is the lowest accessible address for
window 2.

WIN2H This 16 bit register contains the high address
for window 2. Reset writes a 0 to this register.
This value is the highest accessible address for
window 2.

Figure 34 Memory window registers in memory channel

To logic in the channel activates the external CSj* pin (j=1,2) whenever a memory operation
has an addressed in the range covered by the corresponding window registers; i.e. the CS*
signals are active when:

 CS1* active when : WIN1L <= address =< WIN1H & ENW1* & ENCH

 CS2* active when: WIN2L <= address =< WIN2H & ENW2* & ENCH

4.6.3. Logical mask register.

This register can be written with an 8-bit value which is used during logical operations on the
memory bus. These operations are of the type read-modify-write. Three basic operations are
allowed:

?? Logical AND

?? Logical OR

?? Logical XOR

And are performed in the following way:

1. the memory interface reads a byte from the specified address

2. a logical operation is performed with the mask register value

3. the result is written back into the memory address while the original value is returned to
the FEC.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 34 2 /21/2002

4.6.4. Memory Bus Status Registers

Bit Name Function

0-4 Reserved

5 INVCOM Invalid command received. Cleared by channel reset.

6 INVADD Invalid address. A command with a memory write
operation was received with an address outside both
window ranges. Cleared by channel reset.

7 GE Global error. Logical OR of all error conditions in
the interface

Figure 35 Status register in memory channel

4.6.5. Memory Bus Commands

The commands used for operating the Memory Bus interface are defined in this paragraph.

Action CMD

[hex]

Command Packet Format

MBUS Reset channel 0xFF C: CH#+TR#+CMD

R: none

Write control register A 0x01 C: CH#+TR#+CMD+DW

R: none

Read Control Register A 0x02 C: CH#+TR#+CMD

R: CH#+TR#+DR

Write WIN1L register 0x03 C: CH#+TR#+CMD+DW16

R: none

Read WIN1L register 0x04 C: CH#+TR#+CMD

R: CH#+TR#+DR16

CAREFUL: Due to a bug in the CCU25-1 logic,
reading this register generates an unwanted parity
error

Write WIN1H register 0x05 C: CH#+TR#+CMD+DW16

R: none

Read WIN1H register 0x06 C: CH#+TR#+CMD

R: CH#+TR#+DR16

CAREFUL: Due to a bug in the CCU25-1 logic,
reading this register generates an unwanted parity
error

Write WIN2L register 0x07 C: CH#+TR#+CMD+DW16

R: none

Read WIN2L register 0x08 C: CH#+TR#+CMD

R: CH#+TR#+DR16

CAREFUL: Due to a bug in the CCU25-1 logic,
reading this register generates an unwanted parity

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 35 2 /21/2002

error

Write WIN2H register 0x09 C: CH#+TR#+CMD+DW16

R: none

Read WIN2H register 0x0a C: CH#+TR#+CMD

R: CH#+TR#+DR16

CAREFUL: Due to a bug in the CCU25-1 logic,
reading this register generates an unwanted parity
error

Write Mask Register 0x0b C: CH#+TR#+CMD+DW

R: none

Read Mask Register 0x0c C: CH#+TR#+CMD

R: CH#+TR#+DR

Read Status Register 0x0f C: CH#+TR#+CMD

R: CH#+TR#+DR

Single Byte Write to
memory

0x10 C: CH#+TR#+CMD+AH+AL+DW

R: none

Single Byte Read from
memory

0x11 C: CH#+TR#+CMD +AH+AL

R: CH#+TR#+DR

Multiple Byte Read from
Memory

0x14 C: CH#+TR#+ CMD+ AH+AL +LENH+LENL 5

R: CH#+TR#+LENH+LENL+DR[n]

Multiple Byte Write to
Memory

0x15 C: CH#+TR#+ CMD+AH+AL+D[n] 6

R: none

Single Byte RMW-AND 0x20 C: CH#+TR#+CMD+AH+AL

R: CH#+TR#+DR

Single Byte RMW-OR 0x21 C: CH#+TR#+CMD+AH+AL

R: CH#+TR#+DR

Single Byte RMW-XOR 0x22 C: CH#+TR#+CMD+AH+AL

R: CH#+TR#+DR

Figure 36 Memory Bus channel Commands

The Memory address is divided into the two bytes AH and AL, for the high and low part of the
address respectively. The block length (max 2 K) is also divided into two bytes, LENH and
LENL.

When operated in the 2K block transfer mode, the CCU can check the CRC on the incoming
packet only at the end of the packet itself. As no internal buffering is foreseen, it may be
possible that due to a bit error the packet data are corrupted and therefore wrong data are
written to the memory. In this case the CCU still signals the error condition through the bit 0
in Status Register A in the Node Controller.

5 Careful, the value of LENH-LENL has to be augmented by 2.
6 Same as above

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 36 2 /21/2002

4.7. Parallel I/O bus
The parallel I/O bus channel is an adapter similar functionally to a Motorola PIA interface,
allowing parallel connections with programmable direction in groups of 8 bits. Four
independent byte PIO adapter channels are available in the CCU.

The following registers control the operation of each PIO channel:

Name Function

GCR General control register

SR Status Register

DDRA Data direction register for Port

DREG Data register

Figure 37 Registers in Parallel IO bus

4.7.1. Registers in PIO channel

The functions of the registers are detailed in the following paragraphs.

4.7.1.1. General Control Register in PIO

The PIO Control register is defined as follows:

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 37 2 /21/2002

Bit Name Function

1-0 STRW Denotes the width of the strobe signals on the
port

00 – 1000ns

01 – 500ns

10 – 200ns

11 – 100ns.

Initialised to “00” after power up and reset.

2 CLRINT Writing a “1” to this bit generates a clear of the
pending interrupt

3 STRB Strobed operation. When written with a “0” this
bit determines that the input bits are non-
strobed, i.e. the lines read on the port are read
directly. When written with a “1” a strobe signal
on PIOISTR is necessary to transfer the status of
the lines to an internal register.

4 STROUTP Determines polarity of output strobe on port A.
When written with “0” the polarity produced for a
write operation to the PIO port is positive, a “1”
determines a negative polarity.

5 ENINTA Enables generation of Interrupt message to FEC on
reception of STRINP

6 STRINP Determines polarity of input strobe on port. When
written with “0” the polarity expected for a write
operation to the PIO port from external logic is
positive, a “1” determines a negative polarity.

7 Reserved

Figure 38 General Control Register in PIO channel

4.7.1.2. Status Register in PIO

Bit Name Function

0 INT An interrupt was generated by a strobe on Port.
Cleared by writing a “1” to the CLR bit in GCR.

4-1 Reserved

5 INVCOM Invalid command received. Cleared by channel
reset. Does not generate a GE bit (see below)

6 Reserved

7 GE Global error. Logical OR of all error conditions
in the PIO interface

Figure 39 Status register in PIO channel

4.7.1.3. Data Direction Register Port

The data direction register defined the direction of the data transfer in the corresponding port.
Writing a “0” in bit ‘j’ in this register determines the direction of the corresponding data bit in
the port as input. Writing a “1” determines the bit on the port as output. The register is
initialized after power on and reset as all zeros, i.e. with all I/O pins configured as inputs.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 38 2 /21/2002

4.7.2. Commands for PIO channel

The following commands are defined for the PIO channel:

Action CMD

[hex]

Command Packet Format

PIO Reset channel 0xFF C: CH#+TR#+CMD

R: none

Write General Control
Register

0x01 C: CH#+TR#+CMD+DW

R: none

Read General Control
Register

0x02 C: CH#+TR#+CMD

R: CH#+TR#+DR

Read Status Register 0x0F C: CH#+TR#+CMD

R: CH#+TR#+DR

Write DDR 0x05 C: CH#+TR#+CMD+DW

R: none

Read DDR 0x22 C: CH#+TR#+CMD

R: CH#+TR#+DR

Write Data Register 0x10 C: CH#+TR#+CMD+DW

R: none

Read Data Register 0x11 C: CH#+TR#+CMD

R: CH#+TR#+DR

Figure 42 Commands for PIO channel

4.7.3. Interrupt generation

Activating the four input strobe signals on the ports A, B, C and D can generate an interrupt
message packet to be sent to the FEC (at address 0). To control the generation of the
interrupt packets, four control bits (ENINTA, ENINTB, ENINTC and ENINTD) in the control
registers enable this feature on each port separately. The interrupts are generated on the
leading edge of the input strobe. As soon as an interrupt packet is generated, further packets
are disabled until the Clear Interrupt bit is written in the General Control Register.

The interrupt packet is a special packet, as it is not solicited by the FEC, and therefore can
not contain a meaningful transaction number (a “00” is sent in the transaction number field).

The format of the packet is shown below:

Action CMD

[hex]

Command Packet Format

PIO Interrupt none R: CH#+ “00” + INT

Figure 43 Interrupt packet format

In this special case, the channel number is 0xff”.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 39 2 /21/2002

4.8. Trigger distribution
The trigger distribution logic block is a special channel dedicated to the distribution of the
three special trigger (ST1-ST4) signals. The special trigger signals are generated form the
input clock and T1 to the CCU and are distributed to the trigger destination front end ASICs.
The ST1-ST4 signals can be delayed a number of cycles by programming a delay value in
Control register A.

The following registers are allocated to the trigger channel:

Name Comment

CRA Control register A

CRB Control register B

SRA Status register A

4 x TCNT 32 bit trigger counters

Figure 44 Trigger distribution control and status registers

4.8.1.1. Control register A

The control register is a read-write register and is defined as follows:

Bit Name Function

0-3 Unused

7-4 EC This bit enables counting in the trigger counting
register. It is initialised to “0” after a power on
or reset.

Figure 45 Control register A in trigger distribution logic

4.8.1.2. Control register B

The control register is a read-write register and is defined as follows:

Bit Name Function

3:0 STD<3:0> ST delay 3:0

7-4 Unused

Figure 46 Control register B in trigger distribution logic

4.8.1.3. Status register

The status register contains the following bits:

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 40 2 /21/2002

Bit Name Function

0 Reserved

1-4 Reserved

5 Reserved

6 INVC Invalid command. Set when the trigger distribution
channel receives and invalid command. Cleared by a
reset to the channel.

7 ERR Global error. Cleared by a reset to the channel.

Figure 47 Status register A in trigger distribution logic

4.8.1.4. Special trigger signals

The special trigger signals are generated from the T1 input with a default delay of three
periods and a length of one period. The bits 3-6 in Control register control the delay of the ST
signals from their default position.

:

Name Comment

ST1 Generated by T1 sequence 100

ST2 Generated by T1 sequence 110

ST3 Generated by T1 sequence 101

ST4 Generated by T1 sequence 111

Figure 48 Generation of the ST pulses

4.8.1.5. Trigger counter register

The trigger counter register is a 32-bit register counting the number of level 1 (L1) triggers
received by the CCU. The counter is reset when the T1 sequence 101 is encountered. This is
the same sequence that resets the APVs.

4.8.1.6. Commands on the Trigger Distribution Channel

The following commands are allowed for the trigger distribution channel:

Command CMD

[hex]

Command and Reply Format

Write control register A 0x00 C: CH#+TR#+CMD+DW

R: none

Read Control register A 0x01 C: CH#+TR#+CMD

R: CH#+TR#+DR

Write control register B 0x03 C: CH#+TR#+CMD+DW

R: none

Read Control register B 0x04 C: CH#+TR#+CMD

R: CH#+TR#+DR

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 41 2 /21/2002

Read Status register 0x02 C: CH#+TR#+CMD

R: CH#+TR#+DR

Read Trigger counter (i) 0x0(5-8) C: CH#+TR#+CMD

R: CH#+TR#+DR32

TRIG Reset channel 0xFF C: CH#+TR#+CMD

R: none

Figure 49 Commands for trigger distribution logic channel

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 42 2 /21/2002

4.9. JTAG Channel
A simplified JTAG master channel is implemented in the CCU. The JTAG master generates
three signals i.e. TCK, TMS and TDO, where TCK is the scan chain clock, TMS the mode
control bit for the JTAG slave state machines and TDO the serial data sent to the scan chain.
Data is returned on the TDI line. The transitions on TMS and TDO takes place upon the
negative edge of TCK. TDI is sampled on the positive edge of TCK. There is no autonomous
JTAG controller as such with a command structure, the protocol is simply implemented in
software. A JTAG packet consists of the normal header information like Destination, Source,
Length, ChannelNumber and TransactionNumber then follows the Data and CRC16. The
channel number for the JTAG is x60, the data part contains the TMS and TDO information.
Each byte of data contains four bits of TMS and four bits of TDO. This permits sending
JTAG sequences of up to a length of ~8K bits. This is accomplished by packing 3 bits each
of TMS and TDO per data byte.

TMS[11:8] TDO[11:8] TMS[7:4] TDO[7:4] TMS[3:0] TDO[3:0]

Figure 50 Packing of data bytes

As the serial data is shifted around the ring it is at the same time shifted out onto the TMS
and TDO (MSB first out) lines at half the frequency. For each byte four clockpulses (TCK)
are generated which are used to shift out the contents of the TMS and TDO registers, MSB
first. The incoming serial data from the JTAG chain (TDI) is collected in an other four bit
register and fed back into the passing data packet on the token ring. This is not a standard
procedure on the token ring, but it avoids having large storage buffers on chip. To be able to
do this trick the last two byte of the ring data packet should be empty. The returned data is in
fact delayed by two bytes, so here the first data bytes are empty and the last one is filled by
the last TDI nibble. The return data bytes only contains four bits of TDI per byte in bits [3:0].
The CRC16 is recalculated on the fly so it corresponds to the data of the outgoing packet.

Byte 0 Byte 1 Byte 2 Byte 3 Empty Empty

Figure 51 Incoming data stream

Empty Empty Empty TDI 0 Empty TDI 1 Empty TDI 2 Empty TDI 3

Figure 52 Outgoing data stream

4.9.1. JTAG command

The following table summarizes all the commands accepted by the JTAG channel.

Command Command and
Reply Format

Write JTAG string C: (Length –4) x D8 + x0 +x0

R: x0 + x0 + (Length –4) x D8

CAREFUL: due to s bug in the design, if bit (7:3) in the packet are equal to zero, a CRC error
is generated even if in reality there was no error. The data are still accepted by the CCU.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 43 2 /21/2002

4.10. Handling of Alarms
The CCU provides the basic hardware necessary to handle unsolicited alarm conditions from
chips in the front end, such as the APV etc. As described in paragraph 4.3.1.2 (Control
Register B), a control register in the CCU node controller enables this function. Enabled
alarms generate a special packet from the CCU to the FEC. It is then a function of the
software running on the FEC to find the source of the alarm conditions and reset it. The
ALARM lines are level sensitive, the CCU node controller will probe the lines and send out an

alarm packet to the FEC.. When the alarm packet has been successfully transferred, or max
retry condition reached, the corresponding enable bit in CRB is cleared. The following flow
chart explains how the alarm mechanism works.

Figure 53 Alarm Handling

This mechanism insures that even if the first alarm packet got lost or corrupted due to
network problems, the FEC will eventually always receive a notification of the alarm.

 C l e a r
E N A L A R M
 C R B (i)

 M ax
R e t r y ?

Id le

A la rm ?

S e n d
Alarm
P a c k e t

N o

O K ?

N o

N o

W a i t packe t
 re turn

Y e s

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 44 2 /21/2002

5. TOKEN RING INTERFACE
This chapter defines the operation of the token ring interface, including functional and
electrical characteristics.

The token ring interface supports the protocol defined in paragraph 3.1, Token-ring like
protocol.

The circulating messages consist of variable length data packets. To allow proper
transmission of these packets on high speed data lines a coding technique commonly used in
communication networks is used as defined in the next section.

5.1. Coding
The optical (and also the embedded electrical) network will be implemented with two wires:

?? one for clock (and T1)

?? one for data

A full duplex transmission (like the one between the FEC and the CCU will then require four
wires. Each CCU will have two incoming wires and two outgoing ones (neglecting
redundancy).

In order to allow easy implementation of the support hardware, data on the network will be
explicitly synchronized using the clock line. No data and clock recovery is necessary from the
data line.

5.1.1. Clock encoding

The FEC generates a general 40 MHz clock distributed to all CCUs in a ring. The FEC is
responsible to properly align clock and data at the source of the ring. Each CCU will also
regenerate both signals with the appropriate timing.

The scheme used to transmit the clock is shown in the figure below.

Figure 54 Reset generator from optical link

(What are the problems if the link is AC coupled ???)

Vref

POST-AMPPRE-AMP

COMPARATOR

Reset

Clock

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 45 2 /21/2002

5.1.2. Data encoding

Data on the data line are qualified by the rising edge of the clock signal. In addition, the data
bits on the data line will be transmitted using 4bit to 5bit encoding, using a NRZI (Non Return
to Zero with Invert 1 on change) signaling scheme as follows:

4 bit Binary Hex
Value

5 bit Symbol

0000 0 11110

0001 1 01001

0010 2 10100

0011 3 10101

0100 4 01010

0101 5 01011

0110 6 01110

0111 7 01111

1000 8 10010

1001 9 10011

1010 A 10110

1011 B 10111

1100 C 11010

1101 D 11011

1110 E 11100

1111 F 11101

Figure 55 4B/5B encoding

This scheme has been chosen because it requires very limited hardware resources an can be
easily implemented in hardware. The worst case DC unbalance deriving from the usage of
this coding is estimated to be about 10%.

The control symbols are defined as follows:

Control Symbol Code Comment

Idle 11111 Idle

J 11000 In SOF field

K 10001 in SOF field

H 00100 Special

R 00111 Reset

S 11001 Set

T 01101 Termination

Figure 56 Control characters in network

The NRZI signaling scheme is shown below:

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 46 2 /21/2002

1 1 1 1 0 0 0 1 0 1

Figure 57 NRZI encoding format

Basically, this scheme uses a line transition to represent a “1” and no transition to represent a
“0”. The 4B/5B symbols used above are made such that there are never more than 3
consecutive zeros in the line, assuring an adequate number of line transitions, to avoid large
DC shifts.

5.2. Reset Condition
To allow the distribution of a hardware reset to the embedded CCUs, a special extension of
the transmission protocol allows the generation of a reset at the level of the optical receiver
in the embedded electronics. The optical network normally carries a balanced set of ones
and zeros (assured by the NRZI coding), but occasionally the transmitting laser can be forced
to transmit a “1” for a long time. The optical receiver shall include a comparator, capable of
discriminating this condition and to generate an electrical signal generating a reset on the
embedded ring.

5.3. Token Ring Interface Signal Description

5.3.1. CLK(A) and CLK(B)

5.3.2. DI(A) and DI(B)

5.3.3. CLKO(A) and CLKO(B)

5.3.4. DO(A) and DO(B)

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 47 2 /21/2002

6. CHANNEL EXTERNAL SIGNALS AND PROTOCOLS
This chapter defines the pin operation and electrical interfaces on the external ports in the
CCU.

6.1. I2C port
I2C uses a synchronous two wires protocol to transmit serial data between a master up to
128 slaves. Full detailed specifications on the I2C bus can be found in http://www.philips.com
looking for I2C components in the semiconductor product pages. An excellent I2C FAQ
paper is also available from the SCI.ELECTRONICS newsgroup. For the special application
environment of the CCU several extensions are made to the standard protocol and also
some restrictions apply. Extensions and restrictions are detailed in this section.

6.1.1. Waiting for ACKOWLEDGE

The CCU implementation of the I2C interface differs from the standard I2C protocol in the
handling of the acknowledge signal from the slave. The CCU assumes that all I2C devices
attached to it (if working properly) will answer within a normal clock cycle from the assertion
of the last data or address cycle. Should a slave not produce an acknowledge condition
within this time, the CCU will assume an error and signal the condition to the FEC.

6.1.2. I2C signals

Two signals are used on each external I2C port. The SCL signal is a unidirectional
clock/strobe signal used by the I2C master to indicate that valid data are available (or are
expected) on the data line. The CCU is expected to be configured in single master I2C buses
where it is expected to be the only master. The SDA line is a bi-directional open-drain data
line. During bit write operation it is driven by the CCU, during bit read operations it is driven
by the I2C slaves on the bus.

6.1.3. I2C Port protocol

Three types of addressing modes are supported by the I2C master. Single word read-write
with normal 7 bit addressing, extended addressing with 10 bits special addressing (RAL
mode) with 7 + 8 bit address.

6.1.3.1. Normal I2C addressing

The following figure shows the normal addressing I2C transfer format:

Start

Slave Address

[6:0]

R/W

[0]

Ack

[0]

Data

[7:0]

Ack

[0]

Stop

Figure 58 I2C Normal mode addressing format

6.1.3.2. Extended I2C addressing

Start

Slave Address

[6:0]

1 1 1 1 0 X X

R/W

[0]

A1 Slave Address2

[7:0]

A2

[0]

Data

[7:0]

Ack

[0]

Stop

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 48 2 /21/2002

Figure 59 Extended I2C addressing format

6.1.3.3. Special RAL addressing

A packet using the extended RAL format is shown below:

Start

Slave Address

[6:0]

R/W

[0]

Ack

[0]

Sub Address

[7:0]

Ack

[0]

Data

[7:0]

Ack

[0]

Stop

Figure 60 I2C Extended RAL format

This mode was defined to extend the addressing capability of I2C. The first part of the
transaction is performed as a normal I2C read-write operation which transfers 7 bit of
address, the second byte is used to transfer an 8 bit sub-address used to select a particular
register inside an APV ASIC and the third byte carries the data information.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 49 2 /21/2002

6.2. Parallel Interface Adapter port
t.b.d.

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 50 2 /21/2002

6.3. Memory Port
The CCU provides a simple memory-like interface to a parallel device. This is done using an
interface consisting of an 8 bit data path, an 8 bit address bus, a write line and a strobe signal
CS*. The figures below show a typical write and read cycles.

Figure 61 Memory timing for 1 MHz operation

CSLOWCSLOW

CSLOWCSLOW

ADSU ADHO

DSU DHO

MEMSU MEMHO

ADSU ADHO

MDHO

MDSU

0ns 500ns 1000ns 1500ns 2000ns

MEMA[7:0]

MEMD[7:0]

MEMRW

MEMCS*

MEMA[7:0]1

MEMD[7:0]1

MEMRW1

MEMCS*1

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 51 2 /21/2002

7. PROGRAMMING MODEL
From the point of view of the user programming the POA interface on the FEC resembles a
typical network adapter. A programming style as the one shown in the following pseudo-code
example below is envisaged (it is assumed that the channel has already been appropriately
configured):

Figure 62 Single word write to I2C

The CPU generating the transfer is free to perform other operations instead of just waiting as
shown in the example above.

A certain level of speed-up can be achieved by parallelizing operations on the different
channels as shown in the example below.

Here is an example where the read-out of two different addresses on two channels are
simultaneously done:

Figure 63 Concurrent single word read from I2C

7.1.1. Control link protocol

I2C_write:
 prepare the I2C ch. control block in a message buffer
 transmit the message through the ring
 wait for a reply message from the destination

I2C_read_multiple:
 prepare the I2C channel control block_1 in a buffer
 prepare the I2C channel control block_2 in a buffer
 transmit the buffers through the ring
 wait for a reply message from destination 1
 wait for a reply message from destination 2

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 52 2 /21/2002

8. ELECTRICAL CHARACTERISTICS

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 53 2 /21/2002

9. PINOUT
SEE FILE: CC25FPBGA.XLS

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 54 2 /21/2002

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 55 2 /21/2002

10. APPENDIX 1 – COMMAND SYMBOLS

Symbol Width
[bytes]

Function

CH# 1 The channel number to whioch the
command is directed

TR# 1 The transaction number used in the
command

CMD 1 The command code

DW 1 The 8 bit data part of the command

DW16 2 The 16 bit data part of the command

DW32 4 The 32 bit data part of the command

DR 1 The 8 bit data response for the command

Figure 64 Command symbols

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 56 2 /21/2002

11. LIST OF FIGURES
Figure 2 Control ring, simplified view ___ 4
Figure 3 CCU Block Diagram ___ 5
Figure 5 Logical view of control ring__ 7
Figure 6 Token packet format__ 8
Figure 7 Data packet format___ 9
Figure 8 Frame Header format___ 9
Figure 9 EOF definition 9
Figure 10 The EOF frame 9
Figure 11 Data portion of packet ___ 9
Figure 12 Node addressing on ring __ 10
Figure 13 Redundant Skip-Fault Architecture __ 11
Figure 14 Fault repair reconfiguration example __ 12
Figure 15 Channel number allocation __ 17
Figure 16 Control and Status registers in CCU Controller __ 18
Figure 17 Node controller control register A___ 19
Figure 18 Control register B in node controller __ 19
Figure 19 Interrupt packet format ___ 20
Figure 20 Definition of control register C (redundancy control)____________________________________ 20
Figure 21 Control register D bit allocation __ 20
Figure 21 Control register D bit allocation __ 21
Figure 22 Node controller status register A __ 22
Figure 23 Definition of status register C (redundancy control)_____________________________________ 23
Figure 24 Commands for node controller__ 24
Figure 25 CCU Redundancy cabling scheme ___ 25
Figure 26 Control and Status registers in I2C channel ___ 27
Figure 27 Control register A in I2C interface __ 28
Figure 28 Status register A in I2C interface__ 29
Figure 29 Commands for I2C channel __ 31
Figure 30 Registers in memory bus channel__ 32
Figure 31 Control register A in memory channel__ 32
Figure 32 Memory window registers in memory channel__ 33
Figure 33 Status register in memory channel___ 34
Figure 34 Memory Bus channel Commands__ 35
Figure 35 Registers in Parallel IO bus__ 36
Figure 36 General Control Register in PIO channel ___ 37
Figure 37 Status register in PIO channel __ 37
Figure 40 Commands for PIO channel __ 38
Figure 41 Interrupt packet format ___ 38
Figure 42 Trigger distribution control and status registers__ 39
Figure 43 Control register A in trigger distribution logic ___ 39
Figure 43 Control register B in trigger distribution logic ___ 39
Figure 44 Status register A in trigger distribution logic __ 40
Figure 45 Generation of the ST pulses __ 40
Figure 46 Commands for trigger distribution logic channel _______________________________________ 41
Figure 47 Packing of data bytes ___ 42
Figure 48 Incoming data stream___ 42
Figure 49 Outgoing data stream___ 42
Figure 50 Alarm Handling43
Figure 51 Reset generator from optical link__ 44
Figure 52 4B/5B encoding45
Figure 53 Control characters in network __ 45
Figure 54 NRZI encoding format __ 46
Figure 55 I2C Normal mode addressing format___ 47
Figure 56 Extended I2C addressing format __ 48

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 57 2 /21/2002

Figure 57 I2C Extended RAL format ___ 48
Figure 58 Memory timing for 1 MHz operation ___ 50
Figure 59 Single word write to I2C __ 51
Figure 60 Concurrent single word read from I2C ___ 51
Figure 61 Command symbols ___ 55

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 58 2 /21/2002

Index

1. Document History___2

2. General ___3

2.1. Overview of CMS tracker Slow Control __ 3

2.2. Overview of Communication Architecture_______________________________________ 6

2.3. Radiation tolerance features __ 7

3. Ring Architecture ___8

3.1. Token-ring like protocol ___ 8

3.2. Token ring packet Format__ 8
3.2.1. Spacing between packets __ 10
3.2.2. Broadcast mechanism on ring __ 10

3.3. Node addressing ___ 10
3.3.1. Format of Broadcast packets ___ 11

3.4. Redundancy specifications___ 11
3.4.1. Skip Fault Architecture ___ 11
3.4.2. Fault repair reconfiguration__ 12

3.5. Error Handing __ 14
3.5.1. Ring timeouts___ 14
3.5.2. Packet lost ___ 14
3.5.3. Error present but packet length correct ___ 14
3.5.4. Complex error conditions ___ 15

4. ChannelS IN CCU ___17

4.1. General __ 17

4.2. Allocations of channels in the CCU__ 17

4.3. CCU controller__ 18

4.4. Redundancy control__ 25
4.4.1. LVDSMUX __ 25
4.4.2. Input port control__ 26
4.4.3. Output port control __ 26

4.5. I2C Channel __ 27
4.5.2. I2C Control registers ___ 27
4.5.3. Logical mask register. __ 28
4.5.4. I2C Status Registers__ 28
4.5.5. I2C Commands ___ 29

4.6. Memory Bus Channel __ 32
4.6.1. Memory Bus Control registers__ 32
4.6.2. Memory bus Window registers ___ 33
4.6.3. Logical mask register. __ 33
4.6.4. Memory Bus Status Registers __ 34
4.6.5. Memory Bus Commands __ 34

4.7. Parallel I/O bus ___ 36
4.7.1. Registers in PIO channel __ 36

 DRAFT – NOT FOR DISTRIBUTION

A. M. CCU25Specs v2-1 DRAFT – 2 .1 59 2 /21/2002

4.7.2. Commands for PIO channel ___ 38
4.7.3. Interrupt generation __ 38

4.8. Trigger distribution __ 39

4.9. JTAG Channel __ 42
4.9.1. JTAG command___ 42

4.10. Handling of Alarms __ 43

5. Token Ring interface ___44

5.1. Coding___ 44
5.1.1. Clock encoding ___ 44
5.1.2. Data encoding __ 45

5.2. Reset Condition ___ 46

5.3. Token Ring Interface Signal Description _______________________________________ 46
5.3.1. CLK(A) and CLK(B)___ 46
5.3.2. DI(A) and DI(B) __ 46
5.3.3. CLKO(A) and CLKO(B) __ 46
5.3.4. DO(A) and DO(B) ___ 46

6. Channel external signals and protocols ____________________________________47

6.1. I2C port ___ 47
6.1.1. Waiting for ACKOWLEDGE __ 47
6.1.2. I2C signals___ 47
6.1.3. I2C Port protocol __ 47

6.2. Parallel Interface Adapter port___ 49

6.3. Memory Port ___ 50

7. Programming model__51
7.1.1. Control link protocol ___ 51

8. Electrical Characteristics __52

9. Pinout See file: CC25FPBGA.XLS _______________________________________53

10. Appendix 1 – Command symbols __55

11. List of figures ___56

