Hidden Secluded Dark Sectors and Heavy Photons

Mathew Graham SLAC Summer Institute July 30, 2012

Where does an extra force fit?

http://www.particleadventure.org/inter_summary.html

How could additional forces have escaped detection?

- very high mass force carrier
- small coupling to SM particles

Where does an extra force fit?

http://www.particleadventure.org/inter_summary.html

How could additional forces have escaped detection?

- very high mass force carrier
- small coupling to SM particles
 - •0 (direct) coupling to SM!

Portals to a hidden sector

vector

$$\frac{1}{2} \epsilon F_{\mu\nu}^{Y} F^{\prime\mu\nu}$$

dark photon

Higgs

$$\epsilon_h |h|^2 |\phi|^2$$

dark scalar

neutrino

$$\epsilon_{
u}(hL)\psi$$

sterile neutrino

axion

$$\frac{1}{f_a}aF_{\mu\nu}\tilde{F}^{\mu\nu}$$

ALPSs

Kinetic mixing from the vector portal

an old idea: if there is an additional U(I) symmetry in nature, there will be mixing between the photon and the new gauge boson

Holdom, Phys. Lett B166, 1986

- •extremely general conclusion...even arises from broken symmetries
- •gives coupling of normal charged matter to the new "dark photon" q=Ee

30 decades of heavy photons

...there is a lot of physics here!

Jaeckel and Ringwald, hep-ph/1002.0329

Terminology break

- The literature is infested with different terms for (basically) the same things...
 - dark sector=hidden sector=secluded sector
 - dark photon=hidden photon=heavy photon=A'=U-boson
 - $\varepsilon^2 = \kappa^2 = \alpha'/\alpha$

I will try to stick to dark sector, A', and ε !

What coupling?

- Coupling is generated from non-perturbative loops
 - •One-loop if the heavy particle is charged under both U(1)s

$$\epsilon \sim rac{eg_D}{16\pi^2}$$
 ...depends on coupling in dark sector

•Two-loop if one of the U(1)s is embedded into a higher symmetry...

$$\epsilon \sim 10^{-3} - 10^{-2}$$
 enhanced symmetry $\epsilon_{GUT} \sim 10^{-5} - 10^{-3}$

Ok, what about the mass?

- •Could be massless ⇒ millicharges!
- •Non-perturbative \Rightarrow chaos!
- •Same origin as weak scale

$$\Rightarrow O(M_Z)$$

Depending on model, mass scales like:

 $M(A')/M(W) \sim \varepsilon^1 - \varepsilon^{1/2}$ leading to

M(A')~MeV-GeV

A hint from above?

Dark matter annihilation and the dark sector

N. Arkani-Hamed *et al.*, PRD **79**, 015014 (2009).

M. Pospelov and A. Ritz, Phys. Letters B **671**, 391 (2009).

- •new "dark force" with gauge boson ~ GeV while the dark matter particle (charged under the new force) ~ TeV
- •decays to lepton pairs (e⁺e⁻, $\mu^+\mu^-$) but $p\overline{p}$ decays are kinematically forbidden

Some existing constraints

	Shield (m)	E _{beam} (GeV)	Lumi (e ⁻)
E137	200	20	10 ²⁰
EI4I	0.12	9	2×10 ¹⁵
E774	0.3	27.5	5×109

Dark photons and the g-2 anomaly

A' decay products

...up to ~500 MeV, decay to leptons dominates

A' Lifetime

$$\gamma c \tau \propto \left(\frac{10^{-4}}{\epsilon}\right)^2 \left(\frac{100 \text{ MeV}}{m_{\text{A'}}}\right)^2$$

lower ε , lower mass \rightarrow longer lifetime

Much of parameter space will have displaced vertex

Collider vs. Fixed Target

Wherever there is a photon there is a dark photon...

Collider

$$\sigma \sim \frac{\alpha^2 \epsilon^2}{E^2} \sim O(10~fb)$$

$$O~ab^{-1}~{\rm per~decade}$$

Fixed Target

$$\sigma \sim \frac{\alpha^3 Z^2 \epsilon^2}{m^2} \sim O(10 \ pb)$$

 $O ab^{-1}$ per day

...much higher backgrounds

Backgrounds at fixed target

production rates of A' and radiative are related:

$$\frac{d\sigma(e^-Z\to e^-Z(A'\to \ell^+\ell^-))}{d\sigma(e^-Z\to e^-Z(\gamma^*\to \ell^+\ell^-))} = \left(\frac{3\pi\epsilon^2}{2N_{\rm eff}\alpha}\right)\left(\frac{m_{A'}}{\delta m}\right)$$

Cross-section for BH>>Radiative, but kinematics much different...

Even after energy cut, BH background ~5x radiative

...a little more subtle...

Problem: cover the low coupling (<10⁻⁴), intermediate mass (20-200 MeV) region

- •low rate

 intense beam
- •high background

 ⇒ high resolution
- •still high background \infty measure displaced vertex

Solution: HPS

Heavy Photon Search @ Hall

•high rate, high acceptance, high mass & vertex resolution detector intended to run in Hall B

Momentum & Vertex

Trigger and Particle ID

- •Silicon strip tracker inside an evacuated dipole for excellent vtx & mom resolution. Use Si sensors donated from Fermilab & APV25 readout chips
- •Borrow & reconfigure the CLAS inner calorimeter for high rate triggering

The HPS approach

- •good mass resolution, dominated by MS in the detector
- •use small beam-spot ($\sim 10 \mu m$) to constrain A' to point back to IP
 - •beat down vertex tails of prompt decays to ~ 0 expected background
 - •tails dominated by fake tracks...rate dependent
- •Estimate coverage $10^{-4} > \varepsilon > 10^{-5}$ for 200 > mA' > 20MeV
 - •running 3 months each at E_{beam}=2.2 and 6.6 GeV

HPS Expected Reach

Blue:

200nA @ 2.2GeV

target: 0.125%

Red:

450nA @ 6.6GeV

target: 0.25%

3 months of beam at each energy

It's getting crowded...

Many experiments in the works to look for Dark Forces:

Mainz and APEX (JLab) ~ forward spectrometers HPS (JLab) ~ compact Sibased vertex-tracker DarkLight (JLab FEL) ~ high acceptance, H₂ gas target HIPS(DESY)~ beam dump (not shown)

Other direct dark force searches

- Searches at e⁺e⁻ colliders: BaBar & Belle(II), KLOE, BES
 - Lower luminosity + lower backgrounds
 - Higher mass reach (up to $\sim 10 \text{GeV}$)
 - "exotic" dark force states: dark higgs, dark mesons
- Searches at hadrons colliders: ATLAS/CMS & CDF/D0
 - possible unique production path \Rightarrow cascades from SUSY particles
 - "lepton-jets" signatures along with typical di-lepton mass peak
 - potentially covers vast area of coupling-mass space, but with model assumptions
- ⇒ many public results already with more on the way...very active area of study!

What now? My conclusions

- The search for new gauge bosons has a long history over a huge range of mass scales
- Something like a *dark photon* is very well theoretically motivated and if we live in a GU universe it probably exists
 - What coupling? What mass? Who knows? I have my favorite region!
- Dark matter naturally fits in this *dark sector*
 - by the way, this doesn't override SUSY...dark sector models and SUSY get along fine!
- It's very cool to think that there might be very complicated, very different physics going on all around us which we can't examine but through this weak, tenuous connection

What now next?

- Ok, say we are seeing DM annihilating (maybe via dark photons) in the PAMELA & FERMI data...what else should we see
 - $f(e^+/e^-)$ should cut off at \sim DM mass
 - high energy photons from inverse Compton scattering & final state radiation ⇒ constraints from Fermi are discouraging
 - imprints on the CMB \Rightarrow PLANK will be crucial...2013?
- Possibly large impact on direct DM experiments
 - $iDM \Rightarrow lower recoil energy$
 - DAMA/CoGeNT/CRESST anomalies?
 - Xenon100, CDMS are putting big dent in iDM parameter space

"DM could have shown it's face in many places, and didn't...but has wiggle-room left." - Rouven Essig

Apart from these anomalies, the upcoming direct heavy-photon searches will block out a very interesting part of parameter space...maybe the dark sector will show it's head before dark matter