The Search for a Dark Photon at JLab

Tim Nelson - SLAC

on behalf of the HPS collaboration Harvard LPPC Seminar - October 27, 2010

"Dark Photon?"

Standard Model Hidden Sector? strong weak electromagnetic new force? W^{\pm}, Z Q Photon can mix with a new vector boson A'**Hidden Sector U(1)**

How Does it Work?

What Makes It Interesting?

What if dark matter annihilates to A' ??

Arkani-Hamed, Finkbeiner, Slatyer, Weiner Pospelov & Ritz

[Ruderman, Volansky] [Essig, Kaplan, Schuster, Toro]

Explains Observed Excesses

PAMELA: e⁺ fraction

Fermi: e⁺ + e⁻ flux

More Indirect Searches

Searches underway, nothing conclusive yet.

6

Direct Searches: production

X = Standard Model or hidden-sector particle

want low-energy, high-luminosity collider

(BaBar, BELLE, KLOE, CLEO-c, BESIII, ...)

A' Decays

8

 \oplus

Direct Searches: e+e-

9

Direct Searches: meson decays

 $\begin{aligned} \pi^{0} &\to \gamma A' \to \gamma e^{+}e^{-} \\ \text{BaBar} &\sim \text{few} \times 10^{9} \ \pi^{0} \\ \text{(analysis ongoing)} \\ \text{KTeV} &\sim 10^{10} \ \pi^{0} \\ \text{(sensitivity [over?]estimated)} \end{aligned}$ $\\ \phi &\to \eta A' \to \eta e^{+}e^{-} \\ \text{KLOE} &\sim 10^{10} \ \eta^{0} \end{aligned}$

(analysis underway)

Fixed Target

[Bjorken, Essig, Schuster, Toro] [Batell, Pospelov, Ritz] [Reece & Wang]

Collider

 $\sigma \sim \frac{\alpha^2 \epsilon^2}{E^2} \sim O(10 \ fb)$

 $O \ ab^{-1}$ per decade

 $e \xrightarrow{A'_{r}} e^{-}$ $Z \xrightarrow{\gamma \in \mathbb{Z}} Z$

Fixed Target

VS.

$$\sigma \sim \frac{\alpha^3 Z^2 \epsilon^2}{m^2} \sim O(10 \ pb)$$

 $O \ ab^{-1}$ per day

 \oplus

 \oplus

A' Lifetime

$$\gamma c \tau \propto \left(\frac{10^{-4}}{\epsilon}\right)^2 \left(\frac{100 \text{ MeV}}{m_{\text{A}'}}\right)^2$$

At small couplings, A' is long-lived!

Fixed Target: Beam Dump

 \oplus

New Experiments?

14

New Experiments?

In simple models, expect:

 $\epsilon \sim 10^{-5} - 10^{-2}$

 $\underset{\text{for Higgs-like U(I)' breaking.}}{\bullet} m_{A'} \sim \sqrt{\epsilon} M_W \sim \text{MeV} - \text{GeV}$

An interesting region not easily explored with beam dumps!

-

HPS: The Elevator Pitch

Sensitivity in this region relies upon abilities to precisely...

- determine invariant mass of A' decay products (estimate momentum vectors)
- distinguish A' decay vertexes as non-prompt (extrapolate tracks to origin)

Placement of a tracking and vertexing system immediately downstream from a target and inside an analyzing magnet provides both measurements with high acceptance from a single, relatively compact detector.

"If they don't like our proposal I'll show them the kittens. Everybody likes kittens."

 \oplus

Fixed Target A' Kinematics

 $\theta_{\text{decay}} = m_{\text{A}'}/E_{\text{A}'}$ (~200 MeV/6 GeV = 33 mrad)

HPS Concept

18

Backgrounds

Experimental Requirements

- Thin targets need to reduce backgrounds require high beam current to probe small cross sections: Q_{tot} ~ IC for T=0.25% X₀
- Manageable occupancies require ~DC beam to spread out background from IC of angry electrons as much as possible.
- Need fast detectors and electronics, fast and efficient trigger algorithms
- Good mass and vertex resolution are at the heart of sensitivity

CEBAF at JLab

Simultaneous delivery of electron beams at different energies and intensities in three experimental halls.

- \clubsuit $E_{\text{beam}} = n \times 1.1 \text{ GeV}, n \le 5 (5.5 \text{ GeV Max})$
- ♣ *I*_{beam} < 100 μA (A&C), <300 nA (B)
- bunch separation: 2.004 ns
- energy upgrade complete 2014: $E_{\text{beam}} = n \times 2.2 \text{ GeV}, n \le 5 (11 \text{ GeV max})$

Ideal for this experiment.

JLAB

Beamline

SLAC

Tracking/Vertexing Challenges

- At relevant beam energies and interesting A' masses, decay products tend to be electrons with momenta order a few GeV. Multiple scattering...
 - dominates both mass and vertexing measurement errors
 - leads to pattern recognition mistakes in dense environments
- Proximity to target means primary beam must pass through apparatus.
 - scattered beam sweeps out a "dead zone" of extreme occupancy and radiation, compounded by beam-gas interactions
 - puts low-mass acceptance in opposition to longevity and tracking purity
- Long-lived A' signal very small: vertexing must be exceedingly pure to eliminate fakes.

SLAC

Challenges \Rightarrow Design Principles

Mass and vertex resolution

- Iow-mass construction
- Occupancies and radiation
 - fast, robust sensors / readout
 - movability / replaceability
 - 👶 operation in vacuum
- Acceptance/Purity
 - optimized sensor layout

FNAL

Light, Fast, Robust Sensors

pixels too massive, costly, complex: microstrips are the simple, lightweight solution

Production Tevatron Runllb sensors

- many capable of 1000V bias: fully depleted to > 4×10¹⁵ e⁻/cm²
- 🔒 Fine readout granularity
- Available in sufficient quantity

Cut Dimensions (L×W)	100 mm × 40.34mm
Active Area (L×W)	98.33 mm × 38.34mm
Readout (Sense) Pitch	60μm (30μm)
# Readout (Sense) Strips	639 (1277)
Breakdown Voltage	>350V
Total Interstrip Capacitance	<1.2 pF/cm
Defective Channels	<1%

Fast Readout Electronics: APV25

SLAC/FNAL

Low Mass Support/Cooling

CF-composite/rohacell-foam

- I.0% X₀/layer
- dominated by Si

H₂0/glycol at -10°C

- outside tracking volume
- vacuum minimizes heat load on sensors

	Radiation Length (mm)	Thickness (mm)	Coverage/Unit Acceptance	Scattering Material (% X ₀)
Silicon	93.6	0.320	1.2	0.410
Rohacell Foam	13800	3.0	0.5	0.011
Carbon Fiber	242	0.150	0.5	0.03 I
PGS Passivation	256	0.101	1.25	0.049
Ероху	290	0.050	0.5	0.009
Total	-	-	-	0.510

SLAC/FNAL

28

Moveable/Replaceable

Detector Layout

Layers I-3: vertexing

- Layers 4-6: pattern recognition with adequate pointing into Layer 2.
- Bend plane measurement in all layers: momentum
- 106 sensors/hybrids
- 👶 530 APV25 chips
- 👶 67840 channels

	Layer I	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	
z position, from target (cm)	10	20	30	50	70	90	
Stereo Angle	90 deg.	90 deg.	90 deg.	50 mrad	50 mrad	50 mrad	
Bend Plane Resolution (µm)	≈ 6	≈ 6	≈ 6	≈ 6	≈ 6	≈ 6	
Stereo Resolution (µm)	≈ 6	≈ 6	≈ 6	≈ 120	≈ 120	≈ 120	
# Bend Plane Sensors	4	4	6	10	14	18	
# Stereo Sensors	2	2	4	10	14	18	
Dead Zone (mm)	±1.5	±3.0	±4.5	±7.5	±10.5	±13.5	
Power Consumption (W)	10.5	10.5	17.5	35	49	63	

Vertexing

Pattern Recognition

SLAC

Dead Zone and Acceptance

 \oplus

SLAC

Dead Zone Limits

Layer I dead zone <±1.5 mm (15 mrad) allows for ~8 months running at acceptable occupancies.

32

SLAC

Tracker Acceptance

- At smaller masses, dead-zone limits acceptance
- At larger masses, losses due to limited coverage in layers 5 and 6 become important.
- Solid angle of dead zone increases with increasing z-vertex position

33

Matt Graham - SLAC

Tracking Efficiency

-

Matt Graham - SLAC

Tracking Purity

~99% tracks have 12/12 hits assigned correctly

Mis-assigned hits mostly in high-occupancy view of 90-degree stereo layers.

Matt Graham - SLAC

Momentum Resolution

 $\frac{\sigma_p}{p} \simeq 1 - 1.5\%$ multiple-scattering dominates errors

Matt Graham - SLAC

Mass Resolution

naively,
$$\sigma_m \propto \frac{m}{E}$$

Angular resolution at vertex dominates error: limited by multiple scattering

Expect significant improvement from constraining track to vertex

Impact Parameter Resolution

Matt Graham - SLAC

 \oplus

Matt Graham - SLAC

Vertex Resolution

38

39

need $\sim 10^{-7}$ rejection for sensitivity to small signals

Maurik Holtrop - UNH

Hybrid Calorimeter

Design criteria: highest acceptance with readily available crystals, low background.

Vacuum box: I cm aluminum plate with cutout area for beam.
5 rows of 46 lead-tungstate crystals, total: 460 In hand from other
3 rows of 16 lead-glass or Shashlyk crystals, total: 96 experiments

 \oplus

r

Acceptable occupancy and multiplicity can be achieved in all crystals with 100 MeV threshold and 8 ns time window.

а

а

1

41

а

d

9m

Maurik Holtrop - UNH

Trigger Selection

Total trigger budget estimated at 20 kHz

Simple 3×3 clustering with 50 MeV seed threshold

Trigger Requirement	A' (250 MeV) Acceptance	Background Acceptance	Background Rate	
Events with least two opposite clusters	44.6%	I.26%	I.6 MHz	
Cluster energy > 0.5 GeV and < 4.4 GeV	46.4 %	0.239%	0.3 MHz	
Energy sum < 5.1 GeV	46.4 %	0.0959%	I 20 kHz	
Energy difference < 3.2 GeV	46.1 %	0.0823%	I02 kHz	
Lower energy - distance slope cut	45.4%	0.0601%	75 kHz	
Clusters coplanar to 45°	44.6%	0.0344%	43 kHz	
Eliminate crystals in row 1, column 0,3,4	41.3 %	0.0158%	20 kHz	
Not counting double triggers	38.1%	0.0135%	I7 kHz	

A' Mass (MeV)	50	100	200	250	300	400	500	600	700
Trigger Acceptance	3.1%	18.5%	33.7%	38.1%	40.5%	36.3%	30.3%	25.1%	21.3%

Maurik Holtrop - UNH

Muon Detector

Conceptual design: Location ~ 2m from target Iron absorbers: 30 cm + 3x15 cm Four segmented hodoscopes, 1.5 cm thick

Muon Detector Optimization

44

Maurik Holtrop - UNH

Maurik Holtrop - UNH

Pions?

Pion rates lower than predicted? Trigger may be manageable Add more shallow planes to improve pion trigger/ID?

Phil Schuster - SLAC

46

Reach Estimates

bump hunt

 $\frac{d\sigma(e^{-}Z \rightarrow e^{-}Z (A' \rightarrow e^{+}e^{-}))}{d\sigma(e^{-}Z \rightarrow e^{-}Z (\gamma^{*} \rightarrow e^{+}e^{-}))} = \left(\frac{3\pi\epsilon^{2}}{2N_{eff}\alpha}\right) \left(\frac{m_{A'}}{\delta m_{A'}}\right)$ $\left(\frac{S}{\sqrt{B}}\right)_{bin} = \left(\frac{N_{radiative}}{N_{total}}\right) \sqrt{N_{bin}} \left(\frac{3\pi\epsilon^{2}}{2N_{eff}\alpha}\right) \left(\frac{m_{A'}}{\delta m_{A'}}\right) \epsilon_{bin}$

bump hunt + vertexing

$$\begin{pmatrix} \frac{S}{\sqrt{B}} \end{pmatrix}_{bin,zcut} = \begin{pmatrix} \frac{S}{\sqrt{B}} \end{pmatrix}_{bin} \frac{\epsilon_{sigeff}(zcut)}{\sqrt{\epsilon_{rejection}(zcut)}}$$
$$\epsilon_{sigeff}(zcut) \cong \epsilon_{vtx} \times \left(e^{-\left(\frac{zcut}{\gamma c \tau}\right)} - e^{-\left(\frac{zmax}{\gamma c \tau}\right)} \right)$$

 \oplus

Phil Schuster - SLAC

HPS Reach: one month run

0.1 0.01 5.5 GeV 10^{-2} $E_{beam} = 5.5 (3.3) \text{ GeV}$ BaBar a_{μ} 3.3 GeV a_{ρ} (prelim.) $I_{beam} = 400 nA$ **KLOE** BEI 10^{-3} Target = 0.25% (0.125%) WKTeV Time = 3×10^6 s (~1 month) D/I E774 ÁPEX E 10^{-4} EI $\mathbf{\Lambda}^{1}$ APEX: "A-prime Experiment" *m*(e⁺e⁻) bump-hunt using HPS Hall A two-arm spectrometer. 10^{-5} HIPS E137 D/L = DarkLight: full kinematic reconstruction 0.01 0.1 using JLab FEL and H-gas target

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

bum**b**-hunt

+vertexing

all regions

are 2σ

 $m_{A'}$ (GeV)

 \oplus

Phil Schuster - SLAC

Expected Improvements

- Further elimination of tracks with mishits
- 🔒 Vertex-constrained mass
- Likelihood fit to decay length distributions
- Optimization of muons, addition of pions
- Addition of more beam energies

https://confluence.slac.stanford.edu/display/hpsg/Heavy+Photon+Search+Experiment

HPS: A proposal to Search for Massive Photons at Jefferson Laboratory

HPS HEAVY PHOTON SEARCH

A Proposal to Search for Massive Photons at Jefferson Laboratory

🛟 Fermilab

1

Jefferson Lab

September 10, 2010

HPS: A proposal to Search for Massive Photons at Jefferson Laboratory

Authors

W. Cooper, M. Demarteau Fermi National Accelerator Laboratory, Batavia, IL 60510-5011

> S. Bueltmann, L. Weinstein Old Dominion University, Norfolk, VA 23529

A. Grillo University of California, Santa Cruz, CA 95064

M. Holtrop, K. Slifer, S. Phillips, E. Ebrahim University of New Hampshire, Durham, NH 03824

P. Schuster, N. Toro Perimeter Institute, Ontario, Canada N2L 2Y5

R. Essig, C. Field, M. Graham, G. Haller, R. Herbst, J. Jaros (Co-Spokesperson), C. Kenney, T. Maruyama,
 K. Moffeit, T. Nelson, H. Neal, A. Odian, M. Oriunno, R. Partridge, D. Walz SLAC National Accelerator Laboratory, Menlo Park, CA 94025

S. Boyarinov, V. Burkert, A. Deur, H. Egiyan, A. Freyberger, F.-X. Girod, V. Kubarovsky, S. Stepanyan (Co-Spokesperson) Thomas Jefferson National Accelerator Facility, Newport News, VA 23606

A. Fradi, B. Guegan, M. Guidal, S. Niccolai, S. Pisano, E. Rauly, P. Rosier and D. Sokhan Institut de Physique Nucleaire d'Orsay, 91405 Orsay, France

> M. Khandaker, C. Salgado Norfolk State University, Norfolk, VA 23504

N. Dashyan, N. Gevorgyan, R. Paremuzyan, H. Voskanyan Yerevan Physics Institute, 375036 Yerevan, Armenia

> M. Battaglieri, R. DeVitta INFN, Sezione di Genova, 16146 Genova, Italy

> > 2

Status

- Proposal presented at JLab workshop "Boson 2010" <u>http://conferences.jlab.org/boson2010/</u>
- Estimated cost: \$3.1M (includes contingency)
- No time "on the floor" in the 6GeV schedule: main run period likely to be in 12 GeV era.
- Going before PAC at JLab in January
- Pulling up the sofa cushions to continue development work

Plans

Testing reach at I2GeV energies

- Investigating alternate magnets
- Hard at work on the targets that will be needed
- Broadening trigger and reach to include pions, optimize muons
- Tracking/vertexing improvements
- APV25 readout and DAQ development getting underway

Summary

Compelling reasons to look for a hidden, low-mass U(1)

- JLab has two excellent instruments for these searches: CEBAF and FEL
- HPS has unique capability to probe intermediate couplings: complimentary to other efforts
- Interesting reach already demonstrated: how much better can we make it?

53

Direct Searches: Tevatron/LHC

Lightest SUSY particle ("LSP") not stable, and can decay to A' + hidden sector

55

Maurik Holtrop - UNH

ECal Trigger

250 MeV A' event

Why Vacuum?

Upgrade?

Thin silicon in Layers 1 and 2?

- Reduces material budget by 0.15% X₀ / plane: 30% of total.
- S/N still ~22: timing resolution degrades by only ~10%.
- Cost: \$37.5k for silicon per copy
- Should be possible to use same hybrids, partially populated, with a pitch adapter
- Additional risk for parts not in hand. Risk in working with Micron, but minimal for such a small production of single-sided sensors.

HPS? REALLY?

- HPS: "Heavy Photon Search" John Jaros (co-spokesperson)
- MaDPhoX: "Massive Dark Photon Experiment" Tim Nelson
- MassiVE: "Massive Photon Vertex Experiment" Maurik Holtrop

Having too much fun for a mutiny, so for now at least, HPS it is!