TEM3P - Multi-Physics

Advanced Computations

SLAC National Accelerator Laboratory

CW10, Stanford, September 20, 2010

TEM3P (Thermal – Electromagnetic - Mechanical) Solver

TEM3P - Thermal Analysis

Equation for heat distribution

$$\nabla \cdot k(T) \nabla T = 0$$
 in Ω

subject to boundary conditions:

- Prescribed temperature T = T(x)
- Heat input

$$k\frac{\partial T}{\partial n} = q$$

Insulated surface \bigcirc

$$\frac{\partial T}{\partial n} = 0$$

• Convection

$$k\frac{\partial T}{\partial n} = h(T_0 - T)$$

CW10

TEM3P - Thermal Solver Capability

- Solver Combine Picard with Newton method
 - Use Picard at the beginning
 - Switch to Newton when close to solution
- Capabilities
 - EM heating
 - Nonlinear thermal conductivity in near superconductivity condition - for example, Nb
 - Fluid-Solid interface nonlinear Neumann boundary condition (Helium-Nb interface)
 - · Shell elements for surface coating -

TEM3P - Thermo-Elasticity Analysis & Scaling

• Formulation

$$\nabla \cdot \left[\mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T) + \lambda (\nabla \cdot \mathbf{u}) \mathbf{I} \right] - (3\lambda + 2\mu) \alpha \nabla T = 0 \text{ in } \Omega$$

$$\mathbf{u} = \hat{\mathbf{u}} \text{ at } \Gamma_D$$

$$[\mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T) + \lambda (\nabla \cdot \mathbf{u}) - (3\lambda + 2\mu) \alpha T \mathbf{I}] \mathbf{n} = 0 \text{ at } \Gamma_N$$

TEM3P strong scaling

TEM3P Benchmark of RF Gun Cavity

Goal: to compute the thermal drift in RF frequencies due to the mechanical deformations caused by EM heating

TEM3P - RF Gun Cavity EM Analysis

Power loss:

$$P = \frac{1}{2} \int_{S} H^2 R_s dS$$

Two modes:

- 1st freq: 2.84112 GHz
- 2nd freq: 2.85608 GHz

Electric field distribution for the accelerating mode

TEM3P - RF Gun Cavity Thermal Analysis

- 7 cooling channels with bulk temperatures ch1: 25.21, ch2:25.85, ch3: 25.73, ch4: 25.9, ch5: 25.91, ch6: 26.05, ch7: 25.9, and film coefficients: ch1: 22409, ch2: 22584, ch3: 22272, ch4: 21542, ch5: 22320, ch6: 21447, ch7: 7000
- TEM3P: cooling channels are modeled as Robin (mixed) BC.
- Thermal load from EM power loss (4000 Watt), EM Heating BC.
- Thermal conductivity for copper 391
- Thermal conductivity for stainless steel 16.2

TEM3P - RF Gun Cavity Thermo-elastic Analysis

TEM3P - RF Gun Cavity Thermal Drift

- o Ideal cavity
 - 1st freq: 2.84112 GHz
 - 2nd freq: 2.85608 GHz
- Deformed cavity
 - 1st freq: 2.84101 GHz
 - 2nd freq: 2.85593 GHz

For 2^{nd} freq. $\Delta f = 1.5 e5 Hz$

 In superconducting cavities, high electromagnetic fields produce a Lorentz force acting as a pressure force perpendicular to the cavity walls.

 The gradient dependent Lorentz force detunes the cavity and is proportional to the square of the electric field.

$$\mathbf{P} = rac{1}{4} \left(\mu_0 |\mathbf{H}|^2 - \epsilon_0 |\mathbf{E}|^2
ight)$$

• Lorentz force detuning simulation has two steps:

- Use Omega3P to solve for the accelerator field.
- Use TEM3P to solve the for structural deformations

TEM3P - Lorentz Force Detuning in ICHIRO Cavity

The CAD model

Deformation

Parameters:

- Acceleration gradient: 26.5 MV/m
- Elastic property: 1.05x10¹¹ N/m²
- Wall thickness: 2.8 mm

Maximum displacements caused by Lorentz for using different meshes

Mesh layer	No. DOFs	order	<u>Umaxz</u>
1	116,025	2	4.653 <i>e</i> -8 m
2	1,101,558	2	4.728 <i>e</i> -8 m
4	4,764,993	2	4.735 <i>e</i> -8 m

