T3P - Time Domain

Advanced Computations

SLAC National Accelerator Laboratory

CW10, Stanford, September 20, 2010

Combine Ampere's and Faraday's laws

$$\nabla \times \nabla \times \vec{E} + \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} + \mu \sigma_{eff} \frac{\partial \vec{E}}{\partial t} = -\mu \frac{\partial \vec{J}}{\partial t}$$
$$\sigma_{eff} = \omega \varepsilon_0 \varepsilon_i$$

Unconditionally stable time integration*

*Navsariwala & Gedney, An unconditionally stable parallel finite element time domain algorithm, Antennas and Propagation, **1996**

> Solve linear system at every time step: Ax=b

• Beam excitation

- Short-range wakefield of beamline components
- Wakefield driven HOMs/trapped modes
- Moving windows for short bunches
- Dipole excitation
 - Mode identification in cavities
- Port excitation
 - Monochromatic pulse at waveguide ports
 - Broadband pulse

T3P - Dipole and Wakefield Benchmarks

Wakefield Benchmark

- 10 degree slice
- 25K elements
- 1 cm bunch length
- dt = 1 ps

Longitudinal Wake Potential

p=2

11.037

11.037

0.7

T3P - Short bunch Wakefields in Long Taper

T3P - PEP-X Beam Position Monitor

Short-range Wakefield, Trapped Mode, Impedance Spectrum

Impedance spectrum

10

Page 6

T3P - Trapped Mode & Damping

Page 7

T3P - Parallel Performance

Runtime parameters for T3P PETS simulations:

Basis Order	Degrees of Freedom	CPUs	Walltime/step
p=1 $p=2$ $p=3$	$\begin{array}{c} 10\mathrm{M} \\ 54\mathrm{M} \\ 159\mathrm{M} \end{array}$	$1152 \\ 1152 \\ 4096$	0.30 secs 1.63 secs 10.6 secs

