Modeling and Meshing with CUBIT

CUBIT full documentation and code access instructions at http://cubit.sandia.gov.

Simulation Workflow

1) Model generation and meshing with CUBIT

Build model Use symmetry to reduce
Mesh geometry

2) Apply ACE3P solver

$$
\begin{aligned}
& \text { Run Omega3P } \\
& 3642 \text { Jul } 22 \text { 09:32 logfile.output } \\
& 233544 \text { Sep } 311: 59 \text { mode. } 10+1,191206 \mathrm{E}+09 \text {, m0 } \\
& 233544 \text { Sep } 311: 59 \text { mode } 10,2,064482 \mathrm{E}+09 . \mathrm{m} 1 \\
& 388212 \text { Sep } 3 \text { 10:41 model1.ncdf } \\
& 450 \text { Jul } 1008: 4703 \mathrm{p} \text {. in } \\
& 5285 \text { Jul } 22 \quad 09+26 \text { sample, input } \\
& 512 \text { Sep } 3 \text { 11:59 vector1/ }
\end{aligned}
$$

3) Visualize with ParaView

- CUBIT basics
- Model generation - Pillbox cavity
- Model generation and meshing with journal files
- Meshing
- Mesh quality checking

Creating Geometry in CUBIT

- CUBIT can create many analytic geometries from scratch and in decomposition
- Seven geometry primitives types are available and accessed with the Create button
- CUBIT creates the geometry with the GUI or with command line syntax: CUBIT> help create

Geometry Booleans \& Webcutting

- Geometry Booleans define the shape of a Body based on overlapping regions
- Subtract - Remove regions of overlap
- Intersect - Delete all except regions of overlap
- Unite - Combine all regions
- Webcutting slices 1 Body into 2 Bodies
- Plane
- Cylinder
- Extended Surface
- Intersection with "Tool"

Working with the CUBIT GUI

Drop Down Menus

Tool Bar Commands \& Command Panel

Entity Selection Filter

Volume, Surface, Curve, Vertex

Command Panel

- CUBIT basics
- Model generation - Pillbox cavity
- Model generation and meshing with journal files
- Meshing
- Mesh quality checking

Configuration Options

- Tools->Options
- History

- Uncheck "Use Starting Directory"
- Change to work directory
oLayout->Cubit Layout
oCheck "Use Labels on Buttons"

Create CUBIT Model for a pillbox cavity with GUI

Using the 3 button Mouse

Select One or a Group of Surfaces

ID Input Fields

Right clicking in the input field will display an additional command menu

Done Selecting - Move to next field in dialog

Select Other - Used when picking from graphics window. Cycles through nearby entities

Insert Selection - Add a new
selection without changing existing selection

Reject Selection - Removes most recently added id

Select All - Select all input type entities

Clear Selections - Remove all ids from input field

Adding beam pipe to pillbox cavity

Rounding the Iris of the pillbox with beampipe

Use symmetry to reduce $1 / 2$ of the cavity

1. Volume
2. Webcut
3. Plane
4. Volume IDs [1]
5. YZ Plane
6. Offset Value [0]
7. Apply
8. Delete
9. Volume ID [2]
10. Apply
"compress ids" in command window

Reduce to $1 ⁄ 4$ with Webcut, XZ Plane and Delete

"compress ids"

Save the Model in ACIS (.sat) Format

Tools
->Journal Editor
In Journal Editor window
-> File
-> Import
-> From "Command Tab"

Then save to a file (.jou)
"reset" at top is added to clean up the workspace when "play" the .jou file (see next page)

Same CUBIT Model with Parameterized Journal File

1. Have model1.jou saved
2. Click the "play" button
3. Select the .jou file
4. Open -> will run through commands in .jou file, model generated

Define Variables \#\{cav_length = 90\} \#\{cav_radius = 100\} Create Cylinder height \{cav_length\} radius \{cav_radius\}

Replace numbers with variables in $\}$ brackets

Checking Model Dimensions

- Find coordinate of a vertex
- Select Vertex Filter
- Pick a vertex
- In command window: type "list vertex <\#>"
- Lists the coordinate

- Measure distance
- Pick two vertices
- Right click window area and chose "measure"
- Distance is shown in command window
- Measure length of line segment
- Select Line Filter
- Pick a line

- Right click window area and chose "measure"
- CUBIT basics
- Model generation - Pillbox cavity
- Model generation and meshing with journal files
- Meshing
- Mesh quality checking

Meshing with CUBIT GUI

- Import solid model (model1.sat, e.g.)
- File
-> Import
-> click the file name (in default directory)
-> Open

Select "Separate Multi-Volume Bodies"

Import Solid Model \& Choose Tetmesh

1. Mesh
2. Volume
3. Mesh
4. Select Entries to Mesh \{all\}
5. Select Meshing Scheme \{Tetmesh\}
6. Apply Scheme

Set Element Size \& Generate Mesh

1. Intervals
2. Select Volume \{all\}
3. Select \{Geometry-adaptive\}
4. Coarseness $\{5\}$
5. Accuracy - middle $\{=2\}$
6. Advanced:
7. Size Limit - Maximum->12
8. Sizing Gradient Limit $\{1.2\}$

CW10
9. Apply

Apply BC at Interior \& Exterior Surfaces

1. Add
2. SideSet ID $\{1\}$
3. Surface
4. IDs \{all except 17 \}
(all the surfaces except the two symmetry planes)
5. Apply

Check Boundary IDs

- Add surface 1 to sideset 2
- Add surface 7 to sideset 3
- Draw sidesets

Set "Block ID" for Material Attributes

Tips

- One should set the BC sideset and material IDs (blocks) and "Element type" before the meshing command (enables mesh quality checking during meshing).
- But you can only "draw" the sideset "colors" after the mesh is generated.

Check Mesh Quality

- Command (type in command window)
quality vol all distortion
quality vol all distortion high 0.0 draw mesh

Scale Units

1. Geometry
2. Volume
3. Transform
4. Scale
5. "all"
6. Uniform Scaling
7. "0.001"
8. Apply

Use smaller units when creating the model and meshing, e.g. mm
Scale to meters for calculation - ACE3P uses standard units

Export the Mesh

- File->Export
- Save as type: Genesis (*.g* *.gen*)
- Finish

(ii) Mesh Geometry Export Opti... ? X

Dimension
© Default \bigcirc 3d $\bigcirc 2 d$
\square Use Large File Format
\square Export As Artifact
Block ID(s)
Q Cancel \quad Finish

- Import "Command tab" into Journal Editor

Convert and Check the Mesh

- In a terminal:
- Convert Genesis file to NetCDF format for ACE3P acdtool meshconvert cubitq netcdf in.gen out.ncdf
- Check mesh connectivity and quality acdtool mesh stats out.ncdf
- Check for inverted tetrahedra (if Tetra10) acdtool mesh check out.ncdf
- Straighten inverted tetrahedra (if Tetra10) acdtool mesh fix mesh.ncdf mesh_fixed.ncdf

acdtool mesh stats Output

```
TOTALS:
    elements: }753
    coordinates: }172
ASPECT RATIO:
    min}=1.0702
    max = 2.32866
    average = 1.55955
    std dev = 0.196946
SHAPE MEASURE:
    min}=0.35191
    max = 0.996323
    average = 0.820372
    std dev = 0.100069
ELEMENT VOLUME:
    min = 7.59101e-09
    max = 5.57899e-07
    average = 1.20845e-07
    std dev = 7.88559e-08
```

```
BOUNDING BOX:
\[
\begin{aligned}
\min & =(0,0,-0.15) \\
\max & =(0.1,0.1,0.15)
\end{aligned}
\]
```

EDGE LENGTH:
$\min =0.00357312$
$\max =0.0227063$
average $=0.0102788$
std dev $=0.00300348$

Euler Characteristic:
Surf Euler Char = 2
Vol Euler Char = 1
Euler Char is OK.

acdtool mesh check Output

Reading the mesh and midpoints ...

Check whether there are invalid quadratic tetrahedral elements...

Total Volume is 0.00133192
Total Number of invalid second order tetrahedral elements (ISOTE) is: 0

Mesh Verification \& Convergence

- Smooth transition from coarse to dense regions
- Small feathers have good mesh representation
- Use "Draw sideset \#" to check boundary setup
- Do not start with very dense mesh
- Start with a reasonable coarse mesh
- Element size ~ 1/10-1/15 of wavelength
- Smooth mesh on curved surfaces
- Refine the mesh to check accuracy
- Check mesh quality every time

