Progress Status of Super*B* Electronics, Trigger, DAQ and Online (ETD/Online)

Steffen Luitz, SLAC 12/3/2010

December 3, 2010 SuperB ETD/Online Status

- Introduction to SuperB
- The Detector
- Rates and Event Sizes
- Design Principles
- The ETD/Online System
 - Trigger
 - Fast Control and Timing System
 - Common Front-End Electronics
 - Experiment Control System
 - ROMs
 - Event Builder
 - HLT & Logging
 - Other Systems
- Open questions
- Conclusions & Outlook

• What is Super*B*?

<u>http://web.infn.it/superb</u>

- "International enterprise aiming at the construction of a very high luminosity asymmetric e⁺e⁻ flavour factory"
- "... promises to be the flagship experiment in flavor physics ..."
- Links to "progress reports"
- To be built at or near LNF (Frascati)
 - ... or elsewhere ... ?
- (Still) Waiting for approval from Italian government
- Goal: collect at least 50-75ab⁻¹ (50-100x existing B-Factory data samples)
- To do that on a reasonable timescale (~5 years)
 - L >= 10^{36} cm⁻²s⁻¹
- State-of-the art accelerator design
- Detector based on the BaBar design
 - Reusing components from BaBar where possible

Introduction to SuperB

- Estimates extrapolated from BaBar for a detector with BaBar-like acceptance
- Bunch crossing instantaneous rate: 476MHz
 - At 10³⁶ the average rate about half that (only half the RF buckets are filled)
- Level-1 trigger rates (scaled from BaBar)
 - At 10³⁶: 50kHz Bhabhas, 25kHz beam backgrounds, 25kHz "irreducible" (physics+backgrounds)
 - \rightarrow 75kHz with a Bhabha veto at L1 rejecting 50%
 - \rightarrow 100kHz without Bhabha veto
 - 50% headroom desirable (from BaBar experience)
- \rightarrow baseline: 150kHz rate capability
- Event size: 75kByte (extrapolated from BaBar)
 - Raw (pre-FEX) sizes understood
 - Still some uncertainties for post-FEX/ROM sizes

Expected Trigger Rates and Event

From BaBar:

- Expect do be able to achieve 25nb logging cross section with a safe real-time HLT
 - Could be improved by maybe 5-10nb with a more aggressive filter (storage & processing cost vs. risk)
- \rightarrow Have to log 25kHz of 75kByte events
- → almost 2 Gbyte/s

- Apply lessons learnt from BaBar & LHC experiments
- Keep it simple
 - Synchronous design, fixed-latency trigger
 - No "untriggered"/push readouts
 - Except for trigger data stream and subdetector internals
 - Minimizes the # of links
- Use off-the-shelf components where applicable
 - Links, networks, computers, other components
 - Software (look into reusing Online frameworks from other experiments)
- Modularize the design share across the system
 - Common building blocks and modules for common functions
 - Implement subdetector-specific functions on specific modules
 - Carriers, daughter boards / mezzanines
- Design with radiation-hardness in mind
 - Where necessary
- Design for high-efficiency and high-reliability factory mode

 - Design for minimal intrinsic dead time (goal $\sim 1\%$)
 - Automation and minimal manual intervention, physical access to hardware

ETD/Online System Design Principles

NATIONAL ACCELERATOR LABORATORY

NATIONAL ACCELERATOR LABORATORY

- Fully pipelined
- input running at 7MHz (maybe 14MHz?)
 - continuous reduced-data streams from sub-detectors over fixed-latency links
 - EMC crystal sums (in the FEE)
 - DCH hit patterns (in the FEE)
- output maybe 14 MHz (fine time fit)
- Total latency goal: ~5us
 - Includes trigger readout, FCTS, propagation

Level-1 Trigger

leaves about 1-2 us for the trigger itself

"BaBar-like L1 Trigger"

- •Calorimeter Trigger
 - cluster counts and energy thresholds
 - but 2-d map (what granularity?)
- Drift chamber Trigger
 Track counts, p_T, z
 - origin of tracks
- Highly efficient, orthogonal
- To be studied:
- SVT trigger
 - # tracks, # tracks
 - not from IP, # back-toback tracks in phi

10

- Bhabha veto
 - \rightarrow HLT?

Links carrying clock, commands and trigger data need to be synchronous and fixed-latency - \sim 1 GBit/s

Readout data links can be variable latency (even packetized) ~2 GBit/s

- Clock distribution
- System synchronization
- Command distribution
 L1-Accept
- Receive trigger decisions from L1

Participate in pile-up and overlapping event handling

- Dead time management
 Fast throttle

 (emulates front-ends in FCTM)
 - •Slow throttle via feedback
- System partitioning
 - 1 partition / subdet.
- Event management

• determine event destination in farm

Fast Control and Timing System

- Target: ~1% event loss
- Assume exponential pdf of event inter-arrival time.
- Assume continuous beams (2.1ns between bunch crossings)
- •No simulation of derandomizer buffers yet
- 1% event loss due to dead corresponds to 1/150kHz -- ca.
 70ns maximum per-event dead time.
- Places hard constraints on trigger, trigger output and FCTS command length!
- Challenge: Detector time resolutions achievable in a hardware trigger and perchannel dead times are also in the same order of magnitude!

Provide standardized building blocks to all sub-detectors, such as:

- Schematics and FPGA "IP"
- Daughter boards
- Interface & protocol descriptions
- Recommendations
- Performance specifications
- Software

• Digitize

- Maintain "circular" latency buffer
- Maintain de-randomizer buffers & output mux
- Generate reduced-data streams for L1 trigger
- Interface to FCTS
 - receive clock
 - receive commands
- Interface to ECS
 - configure
 - calibration
 - spy
 - test
 - etc.

Common Front-End Electronics

- Configure System
 - Upload configuration into FEE
 - Should be fast!
- Monitor System
 - Spy on event data
 - Monitor power supply, temperatures, etc.
- Testing the System
 - Using software specifically written for the FEE
 - We do not foresee ECS-less self-test capabilities for the FEE
- Proposed implementation
 - SPECS (Serial Protocol for Experiment Control System)
 - Bidirectional 10MBit/s bus designed for LHCb

Experiment Control System

NATIONAL ACCELERATOR LABORATOR

 Process and forward FCTS information to FEE, implement FEE-specific requirements

 Receive data from the subdetectors over optical links

• 8 links per ROM?

 Reconstitute linked/pointer events

Process data (FEX, data reduction)

 Send event fragments into HLT farm (network)

Would like to use off-the shelf hardware as much as possible (i.e. off-the shelf computers with OL PCIe cards?) → R&D
Will need to determine processing requirements from sub-detectors.

Readout Modules (ROMs)

Combines event fragments from ROMs into complete events in the HLT farm

- In principle a solved problem Image:
- Prefer the fragment routing to be determined by FCTS
- FCTS decides to which HLT node all fragments of a given events are sent (enforces global synchronization), distribute as node number via FCTS
- Choice of network technology
 - Combination of10Gbit/s and 1GBit/s Ethernet prime candidate
 - UDP vs. TCP ... a long contentious issue?
 - Pros and cons to both
 - Can we use DCB/DCE for layer-2 end-to-end flow control / reliable layer-2 networking in the EB network?
- Design choices for protocol and network / node congestion control
 - My personal preferences:
 - Connection-less UDP-based event builder (events are small)
 - Event-to-event destination decisions taken by FCTS firmware (using a table of node #s)
 - Node availability slow-feedback protocol (over network in software)
 - Use DCB/DCE layer-2 reliability to avoid packet loss in network
- Can we re-use some other experiment's event builder?
 - Interaction with protocol choices

Event Builder and Network

- Standard off-the shelf rack-mount servers
- Receivers in the network event builder
 - Receive event fragments from ROMs, build complete events
- HLT trigger (L3)
 - 10ms/event (baseline assumption, almost 10x BaBar)
 - → 1500 cores needed (~150 servers 16 cores, 10 usable for HLT purposes)
 - We now already have 24-core servers! \rightarrow farm will shrink \odot
- Data logging & buffering
 - Few TByte/node
 - Local disk (e.g. RAID1 as in BaBar)?
 - Storage servers accessed via a back-end network?
 - Probably 2 day's worth of local storage (2TByte/node)? Depends on SLD/SLA for data archive facility.
 - No file aggregation into "runs" \rightarrow bookkeeping
 - Back-end network to archive facility

HLT Farm and Logging

- Envision same concept as in BaBar:
 - Collect histograms from HLT
 - Collect data from ETD monitoring
 - Run fast and/or full reconstruction on sub-sample of events, collect histograms.
 - May include specialized reconstruction for e.g. beam spot position monitoring
 - Could run on same machines as HLT processes (in VMs?) or a separate small farm ("event server clients")
 - Present to operator via GUI
 - Automated histogram comparison with reference histograms and alerting

Run Control

- Coherent management of the ETD and Online systems
 - User interface, managing system-wide configuration, reporting, error handling, start and stop data taking
- Detector Control / Slow Control
 - Monitor and control detector and detector environment
- No effort has gone into even a high-level design of these systems, but we assume that we can use/re-use LHC experiment and commercial technology

- Electronic Logbook
 - Web based integrated with bookkeeping
- Databases
 - Configuration, Conditions, Ambient
- Configuration Management
 - Authoritative source of configuration
 - Log trail of configuration
 - "Provenance light"
- Software Release Management

"ETBD" (eventually to be designed)

- Upgrade paths to a luminosity of 4×10^{36}
 - What do design upfront, what do upgrade later, what is the cost?
 - Accelerator plans already existing
- Data links
 - Jitter, clock recovery, coding patterns for error detection, radiation qualification, performance of embedded SERDES
- ROM
 - 10GBit/s networking technology, I/O sub-system, using a COTS motherboard as carrier with links on PCIe cards, FEX & processing in software or FPGA
- Trigger
 - Latency, physics performance, details of event handling, time resolution and intrinsic dead time, L1 Bhabha veto, use of SVT in trigger, HLT trigger, additional L4 filter, safety vs. logging rate
- ETD performance and dead time
 - Trigger distribution through FCTS (length of commands), intrinsic dead time, pile-up handling/overlapping events, depth of de-randomizer buffers
- Event builder
 - Anything re-usable out there?, network and network protocols, UDP vs. TCP, applicability of emerging standards and protocols (e.g. DCB, Cisco DCE), HLT framework vs. Offline framework (any common grounds?)
- Software Infrastructure
 - Sharing with Offline, reliability engineering and tradeoffs, configuration management ("provenance light"), efficient use of multi-core CPUs

- There has been significant progress on the SuperB ETD/Online system design in the last two years (unfortunately less in the last few months ^(B))
- We are at the end of what we can do without positive news towards approval
- There is a lot to be done help is very welcome!
- Hoping for a positive decision within the next two weeks
 - If so, I'd be happy to come back here and talk about the larger scale computing plans

