
Building Interactive Web
Applications for HEP Using the

Google Web Toolkit (GWT)

Scientific Computing Applications

Data Handling Group

SCA Data Handling: Web Apps

• Existing (traditional) web application

– Initially developed for Fermi starting about 5+
years ago

– Now being reused for other experiments (e.g.
EXO, LSST, CDMS, …)

• Next generation web applications using
Google Web Toolkit (GWT)

Web Applications: Common Features

• Many independent web applications
– Allows independent development
– Shared application framework provides

• authentication, authorization
– CAS single sign-on

• page decoration, site-wide menus, style-sheets,
• Database utilities

– Cross links, common look and feel, summary pages
• Single user experience

• Java Server Pages (JSP)
– Open Source and Custom tag libraries simplify development

• DisplayTag for tabular data
– Sorting, filtering, pagination

• JAIDA tag library for plotting
– Images generated dynamically on server

• Apache/Tomcat servers
– Multiple servers for redundancy
– Monitored using Nagios, JMX

• Data Access Tools
– Oracle, Partitioning
– Java Fits Library
– FreeHEP Root IO library

Existing Web Applications

• Fermi Portal • EXO Portal

• Some applications completely generic
• Some inherit and extend generic project

• Some applications experiment specific

User/Group Manager

http://srs.slac.stanford.edu/GroupManager/protected/users.jsp?experiment=EXO

Data Quality Monitoring

• Web interface allows
– Show data from single run or aggregate set of runs
– View description of each plot
– View/Print multiple plots
– Customized tree to draw attention to important plots

• Can be customized for individuals or groups

Telemetry Trending

• Web interface allows
– Dynamic selection of time period
– Dynamic overlay of quantities
– Customized tree to draw attention to important plots

• Can be customized for individuals or groups

• Cross trending of housekeeping and level 1 data

Pipeline/Data Catalog

• Pipeline web interface allows
– Many views of data processing, down to log files of individual jobs
– If jobs do fail they can be “rolled back” directly from the web

interface

Future Goals

• Desire to provide more interactivity by exploiting

– Higher quality, more interactive web based GUI’s

– Asynchronous (AJAX) functionality

– Support upcoming HTML5 functionality

• 2D, 3D Canvas

• Local storage, “offline” web applications

• Web workers, push technology

• In particular we have been exploring use of
Google Web Toolkit (GWT) for building web
applications

What is Google Web Toolkit
• Toolkit for writing “web 2.0” applications

– Built in support for rich set of “widgets” (-> GWT Widget Gallery)
– Wide range of GUI functionality

• Resolution independent layout managers
• Full control over browser resize behavior
• Popup and pulldown menus
• Drag and Drop
• …

– Retains best of web features
• Works with the web browser instead of fighting against it

– (c.f. Embedded flash or Java Applets)

• Embed HTML
• Use CSS for look and feel (clean model-view-controller architecture)

– Transparent support for different browsers
• IE, Firefox, Chrome, Safari, Opera, iPhone, Android

– Client and Server side code written in a single language (Java)
• Same code can run in browser and on server
• Objects can be transferred from server to client transparently

– Serialize Java object and recompose it as equivalent JavaScript object or vice-versa
– Completely transparent

• Java compiled to JavaScript to run in browser

GWT Widgets Showcase

http://www.smartclient.com/smartgwt/showcase/
http://gwt.google.com/samples/Showcase/Showcase.html

More on Java->JavaScript compiler
• Initial reaction “Yeah right, that’s really going to work well”

– Actually it does – really well
– Maybe because it was written by a compiler expert (not a physicist)
– It not only compiles the code

• It optimizes the Java
– Type Tightening
– Converting non-overridden methods to static
– Finalizing
– Pruning and Dead Code Elimination
– Method Call Inlining

• Then it optimizes the generated JavaScript code
– Static Evaluation (DCE, but on JS AST)
– Method Inliner
– Unused Function Remover
– Code Splitting

• Clusters, Obfuscates and Compresses

– Continually being improved
– Better performance than handwritten JavaScript code

• JavaScript XML parser, converted to Java and then compiled back to JavaScript gave 2x
speed improvement

Why GWT

• Open source toolkit, active open-source community
– Many third-party add-ons

• Good support from Google
– Being used for Google’s own applications

• E.g. Google Wave (now cancelled ), others

– Actively promoted as toolkit for use by others
• Major track at google-IO (google developers conference) for last two years

• Keep investment in existing Java code and expertise
• Ability to use all existing Java tooling

– Full IDE support: Eclipse, Netbeans, Idea …
• Editing, code completion and inline documentation viewing, refactoring, build tools

– Project management (maven: good GWT support built-in)
– Debug client and server code directly in Java IDE using GWT “Hosted Mode”

• Changes to client code immediately reflected in browser

• New GWT specific tools:

SpeedTracer

GWT Designer

EXO DAQ GUI

• Ability to mix GWT into existing
framework
– Keep full resize behavior

• Fully distributed application
– All state maintained on server
– Multiple simultaneous

browsers supported
– Page updates in real time

• Compatible with all major
browsers
– Including Android, iPhone

• Fully distributed control of DAQ for EXO experiment

Standard JSP

GWT

EXO DAQ GUI

Animated dialogs

In production for several months

(Aside) Fetching Updates from Server

• Currently notification of events
from server to client is a hack
– Only client initiated

communication possible
• Client has to poll
• Modified poll with server wait

(Comet)

– Doesn’t scale to large number
of clients

• HTML5 will make this much
easier
– http extensions to support

• server-sent events (SSE)
– Scalable
– Reliable

Client Server

wait for messages
or timeout

List<Message>

getMessagesSince(time)

Improving online monitoring

Dynamically
load tree to

speed up
load time

Improve resize
behavior, maximize

space for plots

Drag and drop
functionality for

selecting/overlaying plots

Popup menus
for changing

layout, colors,
styles, axes, etc

Dynamic updates

• Plan to have this released by November
• Plotting will still by done on server, but…

Next Generation Plotter

• Will give option of displaying plots directly in browser
– More interactivity, smoother updates
– Applicability may depend on overhead of transferring data

Java 2D
Java Apps

PDF, Postscript,
PNG etc

HTML5 Canvas
Abstract

Plot
Graphics

GWTCanvas
gwt-g2d

WebGL
gwt-g3d

Android

Root Database Network

GWT issues
• GWT still developing rapidly

– Many “old” deprecated features
– <100% of Java JDK library available

• In particular graphics

• Many important features not part of core library
– Drag and drop
– Popup menus
– Canvas
– Advanced widgets

• Cross-browser support very good
– Not quite perfect, still need to test on different browsers

• HTML5 features (e.g. canvas) still being developed
– Probably too early to be using these in production

• Long-term support?

Plotting using GWT+Canvas

http://clientsidegchart.googlecode.com/svn/trunk/live-demo/v2_7/com.googlecode.gchart.gchartdemoapp.GChartDemoApp/GChartDemoApp.html

Conclusions

• The advent of AJAX and HTML5 makes it possible to
create dynamic, interactive web applications without
requiring any third-party browser add ones
– GWT is a toolkit which simplifies development of such web

applications
• Initial tests show that development is reasonably straightforward
• We will use several GWT applications for EXO experiment and expect

to use it more in future
• Use of HTML5 features to improve plotting in future looks hopeful

– Anyone interested in collaborating, warning us off?

– GWT is successful enough that it is influencing other toolkits
• Pyjamas – GWT “port” for python
• Oracle: JavaFX – will compile to JavaScript in future (2012)
• Many others…

