
Geant4 Version 10:  

A. Dotti for the Geant4 multithreading task-force 
PPA/SCA Division Meeting ; June 26, 2013 

The challenges of the many-core  
computing era 



Introduction	





3 

What’s new in Geant4 Version 10?	



• Next version of Geant4 (December 2013) will be a major 
release	


-  Version 10.0.beta in its way this week	



•  Incudes several improvements	


-  All categories will include important improvements	


-  SLAC: improved graphic; improvement of hadronic physics (intermediate/

low-energy cascade, low-energy neutron); kernel re-design	


• Main highlight is Multi-threading capabilities	



-  Introduce event-level parallelism	


-  Effort coordinated and maintained at SLAC	



	





4 

Geant4 MT: from prototypes to production	



G4MT 9.4. (2011) G4MT 9.5 
(2012) 

G4 
10.0.beta 

(now) 
G4 10.0 

(Dec. 2013) 
G4 10 
series 

(2014+) 

•  Proof of principle	


•  Identify objects to 

be shared	


•  First testing	



•  MT code 
integrated into 
G4	



•  API re-design	


•  Example migration	


•  Further testing	


•  First optimizations	



•  Public release	


•  All functionalities 

ported to MT	



•  Further 
Refinements	



•  Focus on further 
performance 
improvements	





5 

Why parallelism? (a reminder)	



•  Increase frequency of CPU causes 
increase of power needs	



•  Reached plateau around 2005	


•  No more increase in CPU frequency	



•  However number of transistors /$ you 
can buy continues to grow 	


•  Multi/May-core era	



•  Note: quantity memory you can buy 
with same $ scales slower	



•  Expect: 	


1.  Many core (double/2yrs?)	


2.  Single core performance will not 

increase as we were used to	


3.  Less memory/core	



•  New software models need to take 
these into account: increase 
parallelism	

1.E-04	



1.E-02	



1.E+00	



1.E+02	



1.E+04	



1.E+06	



1.E+08	



1.E+10	



1.E+12	



1970	

 1975	

 1980	

 1985	

 1990	

 1995	

 2000	

 2005	

 2010	

 2015	

 2020	



Bi
llio

ns
	



b/$(x10000)	



T*Hz/$	



CPU Clock Frequecy 1and usage:  The Future of Computing Performance: Game Over or Next Level?	


DRAM cost: Data from 1971-2000: VLSI Research Inc. Data from 2001-2002: ITRS, 2002 Update, Table 7a, Cost-Near-Term Years, p. 172.  Data from 2003-2018: ITRS, 2004 Update, Tables 7a and 7b, Cost-Near-Term Years, pp. 20-21.	


CPU cost: Data from 1976-1999: E. R. Berndt, E. R. Dulberger, and N. J. Rappaport, "Price and Quality of Desktop and Mobile Personal Computers: A Quarter Century of History," July 17, 2000, ;Data from 2001-2016: ITRS, 2002 Update, On-Chip Local Clock in Table 4c: Performance and Package Chips: Frequency On-Chip Wiring Levels -- Near-Term Years, p. 167.  ;	


Average transistor price: Intel and Dataquest reports (December 2002), see Gordon E. Moore, "Our Revolution,”	



Microprocessor Frequency (MHz) 

Microprocessor power dissipation (W) 



Geant4 10.0 : design and results	





7 

Geant4 Multi-threading: event level parallelism	



•  Design to minimize changes in user-code	



•  Maintain API changes at minimum	


•  Focus on “lock-free” code: linearity of speed-up (w.r.t. #threads) is the metrics 

we are currently concentrating on (then we’ll optimize absolute throughput)	


•  Enforce use of POSIX standards to allow for integration with user preferred 

parallelization frameworks (e.g. MPI, TBB, …)	



0	



1	



2	



3	



4	



5	



1	

 2	

 3	

 4	



S	



#Threads	



Ideal	



Real	



S=(Evts/s)nThresds/(Evts/s)1Thread	


Sequential	

 2 Evts/s	



MT w/ 1 thread	

 1.9 Evts/s	



MT w/ 2 threads	

 3.8 Evts/s	



Absolute throughput metric	

Speedup linearity metric	



No real numbers, just illustrative	





8 

Basic design choice	



•  Thread-safety implemented via Thread Local Storage	


•  “Split-class” mechanism: reduce memory consumption	



•  Read-only part of most memory consuming objects shared between 
thread	



•  Geometry, Physics Tables	


•  Rest is thread-private	



	



GeometryObject 
 

- shapeSize 
- shapePosition 
- sensitiveDetector 

GeometryObject 
 

- shapeSize 
- shapePosition 
- TLS reference 

SplitClass Thread1 
- sensitiveDetector 

SplitClass Thread2 
- sensitiveDetector 

SplitClass Thread3 
- sensitiveDetector 



9 

Thread Local Storage	



0	


1	


2	


3	


4	


5	


6	


7	


8	


9	



1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	



S
p

e
e

d
u

p
	



N threads	



10% critical	

 •  Each (parallel) program has 
sequential components	



•  Protect access to 
concurrent resources	



•  Simplest solution: use mutex/lock	


•  TLS: each thread has its own 

object (no need to lock)	


•  Supported by all modern 

compilers	


•  “just” add __thread to variables	


__thread	
  int	
  value	
  =	
  1;	
  
•  Improved support in C++11 

standard	


•  Drawback: increased memory 

usage and small cpu penalty, only 
simple data types of data of static/
global variables can be made TLS	

0	



1	


2	


3	


4	


5	


6	


7	


8	


9	



1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	



S
p

e
e

d
u

p
	



N threads	



1% critical	



Lock	



TLS	



Ideal	



NB: results obtained on toy application, not real G4	





10 

Results: x86_64	



•  Good linearity demonstrated	


•  Efficiency w.r.t. perfect linearity 90% (80% in HT) 	


•  Out-of-the box Geant4 with MT=ON	


•  Further improvements expected	



•  Use of thread-private malloc library	


•  Reduce use of TLS when not necessary	


•  See Euro-Par2010, Part II LNCS6272, pp.287-303: full efficiency recovered	



Intel(R
) X

eon(R
) C

P
U

 L5520  @
 2.27G

H
z 

PRELIMINARY: CMS geometry HT regime 



11 

Results: large number of threads (MIC architecture)	



•  Hybrid mode: Host + Intel Xeon Phi coprocessor	


•  First look at total throughput: Evts/s	



•  Very good results: factor ~x3 in events produced w.r.t. host only	


•  Up to 8 MIC cards can be hosted by single host	


•  Need to coordinate processes (e.g. MPI, intel-MIC-offload)	


•  Very different initialization time between host and MIC (see later checkpointing)	


	



PRELIMINARY: CMS geometry 



12 

Results: memory consumption	



•  No optimizations done 
yet	



•  40MB /thread	


•  Shows benefit of G4MT 

design: speedup 
(almost) linear with 

small increase of 
memory usage	



•  Baseline: 200MB 
(geometry, physics)	



Number of threads	



M
em

or
y u

sa
ge

 (M
B)
	



PRELIMINARY: CMS geometry 



13 

Status of Geant4 Version 10.0	



•  Beta version will be announced at the end of this week	



•  All main functionalities have been ported to MT	


•  Only two limitations:  radioactive-decay or ion beams not yet 

ported (need further work on ion / isomers / decaying nuclei treatment). 
Visualization is not yet fully functional (no event-by-event visualization 
during the event loop)	



•  Migration of user code is relatively simple: existing 
examples and tests can be migrated in few hours, complex user 
applications will require more work	


•  Particular attention should be put in the analysis (hits collection and 

processing): in particular some external analysis tools are not (fully) 
thread safe	



	





Further studies	





Heterogeneous parallelism: MPI based G4MT	



•  MPI based parallelism already available in Geant4	


•  MPI works together with MT	



Example:	


4 MPI jobs	


2 threads/job	


MPI job owns histogram	



Next Step:	


Host + MIC simulation	


Based on MPI	





16 

Improve start-up time: Checkpointing	



•  Each parallel application has sequential part (G4MT: geometry definition, 
physics initialization, threads creation and initialization)	



•  With large number of threads sequential CPU-time can become 
important fraction of total run-time (especially true for accelerators)	



•  Substantially reduced via checkpoints (dump of program image to 
disk at specific points. A controlled “core-dump”), restart from 
checkpoint image	



•  DMTCP: checkpointing for multi-threaded programs (G. Cooperman et al)	


•  Tested with success for Geant4 MT (in collaboration with CMS experiment). 

On Xeon Phi:	


•  Start CMS simulation, checkpoint at first event (5 mins initialization)	


•  Replay/restart application from checkpoint file (10 seconds restart)	


•  Interesting possibility for production system: copy checkpoint image on many 

machines (or accelerators), start clones of process, re-seed processes	





17 

Work in progress	



•  Intel Thread Building Block (TBB): task based parallelism 
framework (expression of interest by some LHC experiment)	


•  TBB works with G4MT: provide one or two examples for final release	



•  ThreadPrivate malloc library (TPMalloc – G. Cooperman et 
al): each thread has its own heap, remove hidden locks in “new/delete”. 
Target to be provided as “external optional component”.	



•  Review APIs with feedback from early users: further simplify 
user-code migration	



•  Identify and solve hotspots, improve performances	



•  Fully functional Visualization drivers	





Future directions	



“The only thing we know about 
the future is that it will be 
different.” 
Peter Drucker 



19 

Accelerators	



•  Increasing interest in accelerators: two main 
technologies GPGPU / MIC architectures	


•  First two Top500 supercomputers based on accelerators (#1: 

Thianhe-2, Intel Xeon Phi ; #2: Titan, Nvidia K20)	


•  In some cases (GPU) rewrite completely code in 

technology specific language	


•  GPGPUs are particularly tailored to specific problems: very 

high performances can be reached in specific domain 	


•  Intel Xeon Phi advantage: no-need to rewrite code, 

optimizations done for MIC architecture are valid for host CPU	





20 

GPU	



•  SLAC/Stanford-ICME/KEK/NVIDIA project	


•  Full EM physics <100 MeV electrons/gammas	



•  Only one kind of material (water) with varying density (medical DICOM)	


•  No geometrical navigation (only voxelization)	



•  Benchamark on TESLA K20: O(100) faster than CPU G4 job (full normal navigation, full physics)	


•  Very promising for domain-specific applications	





21 

Beyond event-level parallelism 

•  To fully use new architecture potentials we need to investigate further level of 
parallelism	



•  SIMD (a.k.a. vectorization): very challenging (very limited success for HEP sw). Two options 
available:	



1.  Rewrite code with intrinsics or low-level constructors (bad idea: not portable, very 
complex for large sw as G4)	



2.  Use compilers auto-vectorization features together with high-level construct	


•  Compiler auto-vectorization for G4 (out of the box): ~10k candidate loops, only about 5% 

actually auto-vectorized	



Geometry	


11%	



Others	


20%	



Had	


44%	



EM	


17%	



Others	


8%	



Other	


69%	



Physics	


 69%	



Possible strategy:	


Map candidate loops with most 
time	


Consuming routines, iteratively try 
out auto-vectorization	





22 

My personal view	



•  Trivial sub-event level parallelism (process tracks in parallel) does not 
scale well: each thread needs thread-private memory (or lock mechanism) 
in addition to the overhead for book-keeping of “split” event. 	



•  Use of high-level parallelization constructs to put parallelization in 
modules/algorithms for example:	


1.  openMP : de-facto standard, supports for Intel accelerators	


2.  Intel CilkPlus : very simple and powerful (function vectorization via 

#pragmas), GCC support only in branch (integration with TBB)	


3.  openACC : relatively new open standard aimed at developing directives 

for accelerators (technology independent)	


•  Need to experiment with all technologies and understand benefits / 

challenges	


•  Possible path: identify one or two of the most time consuming elements in 

simulations (e.g. cross-section calculations , Bertini intra-nuclear cascade) and 
try to apply sub-event parallelism 	





23 

A roadmap: my view 

Core/Thread (intra-
model parallelism) 

CPU (event level 
parallelism) 

Host Parallelism 
(cpu/accellerator) 

User Interface Application 

MPI 

MT 

openMP/
Cilk/… 

openMP/
Cilk/… 

MT 

MPI 

MT 

þ 
þ 
þ 
ý 



24 

Conclusions 

•  Geant4 Version 10.0 well on track for end of year release	


•  Major developments for event-level parallelism	



•  Very promising results obtained on both “traditional” 
CPUs and MIC architectures	



•  Expect further improvements	


•  Possible to integrate G4MT with additional high-level parallelization 

frameworks (TBB, MPI)	


•  Scalability demonstrated up to O(100) threads	



•  Ready for future challenges of current and next generation large 
simulation campaigns (i.e. LHC –scale)	



•  New possibilities for “smaller” simulation needs (efficient use of many 
core machines, accelerators on desktops)	



•  Multi-threading and thread safety is the first 
indispensable step towards further review of Geant4 
code	





25 

Acknowledgments	



I would like to thank few people that helped to produce the 
material here presented and gave important contributions during 
discussions:	



•  K. Murakami (KEK), N. Henderson (SU), A. Vladimirov (SU), G. 
Cooperman (NortheasternU), X. Dong (NortheasternU), G. 
Cosmo (CERN), P. Elmer (PrincetonU)	





Backup 

26 



Geometry and 
Physics 

configuration 

0 1 2 3 4 N 

Per-thread 
Init 

Per-thread 
Init 

Per-thread 
Init 

4 … 

Event 
Loop 

Event 
Loop Event 

Loop 

Random Seeds 

•  To gurantee 
reproducibility 

•  Each thread has its 
own RNG 

•  Master thread pre-
generates per-event 
seed 

•  Each event is re-
seeded 

•  Further refinement on 
RNG to be studied 
(pRNG) 


